![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remul2 | GIF version |
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
remul2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 8005 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | remul 11016 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) |
4 | rere 11009 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴) |
6 | 5 | oveq1d 5933 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) = (𝐴 · (ℜ‘𝐵))) |
7 | reim0 11005 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
8 | 7 | oveq1d 5933 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℑ‘𝐵)) = (0 · (ℑ‘𝐵))) |
9 | imcl 10998 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
10 | 9 | recnd 8048 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ) |
11 | 10 | mul02d 8411 | . . . 4 ⊢ (𝐵 ∈ ℂ → (0 · (ℑ‘𝐵)) = 0) |
12 | 8, 11 | sylan9eq 2246 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) = 0) |
13 | 6, 12 | oveq12d 5936 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) = ((𝐴 · (ℜ‘𝐵)) − 0)) |
14 | recl 10997 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
15 | 14 | recnd 8048 | . . . 4 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ) |
16 | mulcl 7999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ) | |
17 | 1, 15, 16 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ) |
18 | 17 | subid1d 8319 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℜ‘𝐵)) − 0) = (𝐴 · (ℜ‘𝐵))) |
19 | 3, 13, 18 | 3eqtrd 2230 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 · cmul 7877 − cmin 8190 ℜcre 10984 ℑcim 10985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-2 9041 df-cj 10986 df-re 10987 df-im 10988 |
This theorem is referenced by: redivap 11018 remul2d 11116 abscxp 15049 |
Copyright terms: Public domain | W3C validator |