ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o Unicode version

Theorem rhmf1o 13664
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b  |-  B  =  ( Base `  R
)
rhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
rhmf1o  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 13652 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
2 rhmrcl1 13651 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2jca 306 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
43adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
5 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
6 rhmghm 13658 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
76adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( R  GrpHom  S ) )
8 rhmf1o.b . . . . . . . 8  |-  B  =  ( Base `  R
)
9 rhmf1o.c . . . . . . . 8  |-  C  =  ( Base `  S
)
108, 9ghmf1o 13345 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S  GrpHom  R ) ) )
1110bicomd 141 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
127, 11syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
135, 12mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S  GrpHom  R ) )
14 eqidd 2194 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  =  F )
15 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  R )  =  (mulGrp `  R )
1615, 8mgpbasg 13422 . . . . . . . 8  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
172, 16syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
18 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  S )  =  (mulGrp `  S )
1918, 9mgpbasg 13422 . . . . . . . 8  |-  ( S  e.  Ring  ->  C  =  ( Base `  (mulGrp `  S ) ) )
201, 19syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  C  =  ( Base `  (mulGrp `  S
) ) )
2114, 17, 20f1oeq123d 5494 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  F : ( Base `  (mulGrp `  R )
)
-1-1-onto-> ( Base `  (mulGrp `  S
) ) ) )
2221biimpa 296 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
) )
2315, 18rhmmhm 13655 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
2423adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
25 eqid 2193 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
26 eqid 2193 . . . . . . . 8  |-  ( Base `  (mulGrp `  S )
)  =  ( Base `  (mulGrp `  S )
)
2725, 26mhmf1o 13042 . . . . . . 7  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
)  <->  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
2827bicomd 141 . . . . . 6  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
2924, 28syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
3022, 29mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  R ) ) )
3113, 30jca 306 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
3218, 15isrhm 13654 . . 3  |-  ( `' F  e.  ( S RingHom  R )  <->  ( ( S  e.  Ring  /\  R  e.  Ring )  /\  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) ) )
334, 31, 32sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S RingHom  R ) )
348, 9rhmf 13659 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F : B
--> C )
3534adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B --> C )
3635ffnd 5404 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F  Fn  B )
379, 8rhmf 13659 . . . . 5  |-  ( `' F  e.  ( S RingHom  R )  ->  `' F : C --> B )
3837adantl 277 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F : C --> B )
3938ffnd 5404 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F  Fn  C )
40 dff1o4 5508 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
4136, 39, 40sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B -1-1-onto-> C )
4233, 41impbida 596 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   `'ccnv 4658    Fn wfn 5249   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   Basecbs 12618   MndHom cmhm 13029    GrpHom cghm 13310  mulGrpcmgp 13416   Ringcrg 13492   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648
This theorem is referenced by:  isrim  13665
  Copyright terms: Public domain W3C validator