ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o Unicode version

Theorem rhmf1o 13963
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b  |-  B  =  ( Base `  R
)
rhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
rhmf1o  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 13951 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
2 rhmrcl1 13950 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2jca 306 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
43adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
5 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
6 rhmghm 13957 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
76adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( R  GrpHom  S ) )
8 rhmf1o.b . . . . . . . 8  |-  B  =  ( Base `  R
)
9 rhmf1o.c . . . . . . . 8  |-  C  =  ( Base `  S
)
108, 9ghmf1o 13644 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S  GrpHom  R ) ) )
1110bicomd 141 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
127, 11syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
135, 12mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S  GrpHom  R ) )
14 eqidd 2206 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  =  F )
15 eqid 2205 . . . . . . . . 9  |-  (mulGrp `  R )  =  (mulGrp `  R )
1615, 8mgpbasg 13721 . . . . . . . 8  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
172, 16syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
18 eqid 2205 . . . . . . . . 9  |-  (mulGrp `  S )  =  (mulGrp `  S )
1918, 9mgpbasg 13721 . . . . . . . 8  |-  ( S  e.  Ring  ->  C  =  ( Base `  (mulGrp `  S ) ) )
201, 19syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  C  =  ( Base `  (mulGrp `  S
) ) )
2114, 17, 20f1oeq123d 5518 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  F : ( Base `  (mulGrp `  R )
)
-1-1-onto-> ( Base `  (mulGrp `  S
) ) ) )
2221biimpa 296 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
) )
2315, 18rhmmhm 13954 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
2423adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
25 eqid 2205 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
26 eqid 2205 . . . . . . . 8  |-  ( Base `  (mulGrp `  S )
)  =  ( Base `  (mulGrp `  S )
)
2725, 26mhmf1o 13335 . . . . . . 7  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
)  <->  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
2827bicomd 141 . . . . . 6  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
2924, 28syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
3022, 29mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  R ) ) )
3113, 30jca 306 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
3218, 15isrhm 13953 . . 3  |-  ( `' F  e.  ( S RingHom  R )  <->  ( ( S  e.  Ring  /\  R  e.  Ring )  /\  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) ) )
334, 31, 32sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S RingHom  R ) )
348, 9rhmf 13958 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F : B
--> C )
3534adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B --> C )
3635ffnd 5428 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F  Fn  B )
379, 8rhmf 13958 . . . . 5  |-  ( `' F  e.  ( S RingHom  R )  ->  `' F : C --> B )
3837adantl 277 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F : C --> B )
3938ffnd 5428 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F  Fn  C )
40 dff1o4 5532 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
4136, 39, 40sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B -1-1-onto-> C )
4233, 41impbida 596 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   `'ccnv 4675    Fn wfn 5267   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946   Basecbs 12865   MndHom cmhm 13322    GrpHom cghm 13609  mulGrpcmgp 13715   Ringcrg 13791   RingHom crh 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-mhm 13324  df-grp 13368  df-ghm 13610  df-mgp 13716  df-ur 13755  df-ring 13793  df-rhm 13947
This theorem is referenced by:  isrim  13964
  Copyright terms: Public domain W3C validator