ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o Unicode version

Theorem rhmf1o 13667
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b  |-  B  =  ( Base `  R
)
rhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
rhmf1o  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 13655 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
2 rhmrcl1 13654 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2jca 306 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
43adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
5 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
6 rhmghm 13661 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
76adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( R  GrpHom  S ) )
8 rhmf1o.b . . . . . . . 8  |-  B  =  ( Base `  R
)
9 rhmf1o.c . . . . . . . 8  |-  C  =  ( Base `  S
)
108, 9ghmf1o 13348 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S  GrpHom  R ) ) )
1110bicomd 141 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
127, 11syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
135, 12mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S  GrpHom  R ) )
14 eqidd 2194 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  =  F )
15 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  R )  =  (mulGrp `  R )
1615, 8mgpbasg 13425 . . . . . . . 8  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
172, 16syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
18 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  S )  =  (mulGrp `  S )
1918, 9mgpbasg 13425 . . . . . . . 8  |-  ( S  e.  Ring  ->  C  =  ( Base `  (mulGrp `  S ) ) )
201, 19syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  C  =  ( Base `  (mulGrp `  S
) ) )
2114, 17, 20f1oeq123d 5495 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  F : ( Base `  (mulGrp `  R )
)
-1-1-onto-> ( Base `  (mulGrp `  S
) ) ) )
2221biimpa 296 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
) )
2315, 18rhmmhm 13658 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
2423adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
25 eqid 2193 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
26 eqid 2193 . . . . . . . 8  |-  ( Base `  (mulGrp `  S )
)  =  ( Base `  (mulGrp `  S )
)
2725, 26mhmf1o 13045 . . . . . . 7  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
)  <->  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
2827bicomd 141 . . . . . 6  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
2924, 28syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
3022, 29mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  R ) ) )
3113, 30jca 306 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
3218, 15isrhm 13657 . . 3  |-  ( `' F  e.  ( S RingHom  R )  <->  ( ( S  e.  Ring  /\  R  e.  Ring )  /\  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) ) )
334, 31, 32sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S RingHom  R ) )
348, 9rhmf 13662 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F : B
--> C )
3534adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B --> C )
3635ffnd 5405 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F  Fn  B )
379, 8rhmf 13662 . . . . 5  |-  ( `' F  e.  ( S RingHom  R )  ->  `' F : C --> B )
3837adantl 277 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F : C --> B )
3938ffnd 5405 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F  Fn  C )
40 dff1o4 5509 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
4136, 39, 40sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B -1-1-onto-> C )
4233, 41impbida 596 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   `'ccnv 4659    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Basecbs 12621   MndHom cmhm 13032    GrpHom cghm 13313  mulGrpcmgp 13419   Ringcrg 13495   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ur 13459  df-ring 13497  df-rhm 13651
This theorem is referenced by:  isrim  13668
  Copyright terms: Public domain W3C validator