ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o Unicode version

Theorem rhmf1o 13724
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b  |-  B  =  ( Base `  R
)
rhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
rhmf1o  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 13712 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
2 rhmrcl1 13711 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2jca 306 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
43adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
5 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
6 rhmghm 13718 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
76adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( R  GrpHom  S ) )
8 rhmf1o.b . . . . . . . 8  |-  B  =  ( Base `  R
)
9 rhmf1o.c . . . . . . . 8  |-  C  =  ( Base `  S
)
108, 9ghmf1o 13405 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S  GrpHom  R ) ) )
1110bicomd 141 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
127, 11syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
135, 12mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S  GrpHom  R ) )
14 eqidd 2197 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  =  F )
15 eqid 2196 . . . . . . . . 9  |-  (mulGrp `  R )  =  (mulGrp `  R )
1615, 8mgpbasg 13482 . . . . . . . 8  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
172, 16syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
18 eqid 2196 . . . . . . . . 9  |-  (mulGrp `  S )  =  (mulGrp `  S )
1918, 9mgpbasg 13482 . . . . . . . 8  |-  ( S  e.  Ring  ->  C  =  ( Base `  (mulGrp `  S ) ) )
201, 19syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  C  =  ( Base `  (mulGrp `  S
) ) )
2114, 17, 20f1oeq123d 5498 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  F : ( Base `  (mulGrp `  R )
)
-1-1-onto-> ( Base `  (mulGrp `  S
) ) ) )
2221biimpa 296 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
) )
2315, 18rhmmhm 13715 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
2423adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
25 eqid 2196 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
26 eqid 2196 . . . . . . . 8  |-  ( Base `  (mulGrp `  S )
)  =  ( Base `  (mulGrp `  S )
)
2725, 26mhmf1o 13102 . . . . . . 7  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
)  <->  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
2827bicomd 141 . . . . . 6  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
2924, 28syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
3022, 29mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  R ) ) )
3113, 30jca 306 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
3218, 15isrhm 13714 . . 3  |-  ( `' F  e.  ( S RingHom  R )  <->  ( ( S  e.  Ring  /\  R  e.  Ring )  /\  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) ) )
334, 31, 32sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S RingHom  R ) )
348, 9rhmf 13719 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F : B
--> C )
3534adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B --> C )
3635ffnd 5408 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F  Fn  B )
379, 8rhmf 13719 . . . . 5  |-  ( `' F  e.  ( S RingHom  R )  ->  `' F : C --> B )
3837adantl 277 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F : C --> B )
3938ffnd 5408 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F  Fn  C )
40 dff1o4 5512 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
4136, 39, 40sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B -1-1-onto-> C )
4233, 41impbida 596 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   `'ccnv 4662    Fn wfn 5253   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   Basecbs 12678   MndHom cmhm 13089    GrpHom cghm 13370  mulGrpcmgp 13476   Ringcrg 13552   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708
This theorem is referenced by:  isrim  13725
  Copyright terms: Public domain W3C validator