ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o Unicode version

Theorem rhmf1o 14132
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b  |-  B  =  ( Base `  R
)
rhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
rhmf1o  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 14120 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
2 rhmrcl1 14119 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2jca 306 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
43adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Ring  /\  R  e.  Ring ) )
5 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
6 rhmghm 14126 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
76adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( R  GrpHom  S ) )
8 rhmf1o.b . . . . . . . 8  |-  B  =  ( Base `  R
)
9 rhmf1o.c . . . . . . . 8  |-  C  =  ( Base `  S
)
108, 9ghmf1o 13812 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S  GrpHom  R ) ) )
1110bicomd 141 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
127, 11syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  <->  F : B
-1-1-onto-> C ) )
135, 12mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S  GrpHom  R ) )
14 eqidd 2230 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  =  F )
15 eqid 2229 . . . . . . . . 9  |-  (mulGrp `  R )  =  (mulGrp `  R )
1615, 8mgpbasg 13889 . . . . . . . 8  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
172, 16syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
18 eqid 2229 . . . . . . . . 9  |-  (mulGrp `  S )  =  (mulGrp `  S )
1918, 9mgpbasg 13889 . . . . . . . 8  |-  ( S  e.  Ring  ->  C  =  ( Base `  (mulGrp `  S ) ) )
201, 19syl 14 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  C  =  ( Base `  (mulGrp `  S
) ) )
2114, 17, 20f1oeq123d 5566 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  F : ( Base `  (mulGrp `  R )
)
-1-1-onto-> ( Base `  (mulGrp `  S
) ) ) )
2221biimpa 296 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
) )
2315, 18rhmmhm 14123 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
2423adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
25 eqid 2229 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
26 eqid 2229 . . . . . . . 8  |-  ( Base `  (mulGrp `  S )
)  =  ( Base `  (mulGrp `  S )
)
2725, 26mhmf1o 13503 . . . . . . 7  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( F : ( Base `  (mulGrp `  R ) ) -1-1-onto-> ( Base `  (mulGrp `  S )
)  <->  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
2827bicomd 141 . . . . . 6  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
2924, 28syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) )  <->  F :
( Base `  (mulGrp `  R
) ) -1-1-onto-> ( Base `  (mulGrp `  S ) ) ) )
3022, 29mpbird 167 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  R ) ) )
3113, 30jca 306 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) )
3218, 15isrhm 14122 . . 3  |-  ( `' F  e.  ( S RingHom  R )  <->  ( ( S  e.  Ring  /\  R  e.  Ring )  /\  ( `' F  e.  ( S  GrpHom  R )  /\  `' F  e.  (
(mulGrp `  S ) MndHom  (mulGrp `  R ) ) ) ) )
334, 31, 32sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S RingHom  R ) )
348, 9rhmf 14127 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F : B
--> C )
3534adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B --> C )
3635ffnd 5474 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F  Fn  B )
379, 8rhmf 14127 . . . . 5  |-  ( `' F  e.  ( S RingHom  R )  ->  `' F : C --> B )
3837adantl 277 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F : C --> B )
3938ffnd 5474 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  `' F  Fn  C )
40 dff1o4 5580 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
4136, 39, 40sylanbrc 417 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  F : B -1-1-onto-> C )
4233, 41impbida 598 1  |-  ( F  e.  ( R RingHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   `'ccnv 4718    Fn wfn 5313   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Basecbs 13032   MndHom cmhm 13490    GrpHom cghm 13777  mulGrpcmgp 13883   Ringcrg 13959   RingHom crh 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492  df-grp 13536  df-ghm 13778  df-mgp 13884  df-ur 13923  df-ring 13961  df-rhm 14116
This theorem is referenced by:  isrim  14133
  Copyright terms: Public domain W3C validator