Proof of Theorem rhmf1o
| Step | Hyp | Ref
 | Expression | 
| 1 |   | rhmrcl2 13712 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | 
| 2 |   | rhmrcl1 13711 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | 
| 3 | 1, 2 | jca 306 | 
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | 
| 4 | 3 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | 
| 5 |   | simpr 110 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:𝐵–1-1-onto→𝐶) | 
| 6 |   | rhmghm 13718 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | 
| 7 | 6 | adantr 276 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | 
| 8 |   | rhmf1o.b | 
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 9 |   | rhmf1o.c | 
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) | 
| 10 | 8, 9 | ghmf1o 13405 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) | 
| 11 | 10 | bicomd 141 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) | 
| 12 | 7, 11 | syl 14 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) | 
| 13 | 5, 12 | mpbird 167 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 GrpHom 𝑅)) | 
| 14 |   | eqidd 2197 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 = 𝐹) | 
| 15 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 16 | 15, 8 | mgpbasg 13482 | 
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(mulGrp‘𝑅))) | 
| 17 | 2, 16 | syl 14 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅))) | 
| 18 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) | 
| 19 | 18, 9 | mgpbasg 13482 | 
. . . . . . . 8
⊢ (𝑆 ∈ Ring → 𝐶 =
(Base‘(mulGrp‘𝑆))) | 
| 20 | 1, 19 | syl 14 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆))) | 
| 21 | 14, 17, 20 | f1oeq123d 5498 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) | 
| 22 | 21 | biimpa 296 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))) | 
| 23 | 15, 18 | rhmmhm 13715 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) | 
| 24 | 23 | adantr 276 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) | 
| 25 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | 
| 26 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆)) | 
| 27 | 25, 26 | mhmf1o 13102 | 
. . . . . . 7
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))) | 
| 28 | 27 | bicomd 141 | 
. . . . . 6
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) | 
| 29 | 24, 28 | syl 14 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) | 
| 30 | 22, 29 | mpbird 167 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))) | 
| 31 | 13, 30 | jca 306 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))) | 
| 32 | 18, 15 | isrhm 13714 | 
. . 3
⊢ (◡𝐹 ∈ (𝑆 RingHom 𝑅) ↔ ((𝑆 ∈ Ring ∧ 𝑅 ∈ Ring) ∧ (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))) | 
| 33 | 4, 31, 32 | sylanbrc 417 | 
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 RingHom 𝑅)) | 
| 34 | 8, 9 | rhmf 13719 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) | 
| 35 | 34 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵⟶𝐶) | 
| 36 | 35 | ffnd 5408 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐵) | 
| 37 | 9, 8 | rhmf 13719 | 
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 RingHom 𝑅) → ◡𝐹:𝐶⟶𝐵) | 
| 38 | 37 | adantl 277 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → ◡𝐹:𝐶⟶𝐵) | 
| 39 | 38 | ffnd 5408 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → ◡𝐹 Fn 𝐶) | 
| 40 |   | dff1o4 5512 | 
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) | 
| 41 | 36, 39, 40 | sylanbrc 417 | 
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) | 
| 42 | 33, 41 | impbida 596 | 
1
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |