ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmf1o GIF version

Theorem rhmf1o 13930
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b 𝐵 = (Base‘𝑅)
rhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rhmf1o (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 13918 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
2 rhmrcl1 13917 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2jca 306 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
43adantr 276 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
5 simpr 110 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
6 rhmghm 13924 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
76adantr 276 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
8 rhmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
9 rhmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
108, 9ghmf1o 13611 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
1110bicomd 141 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
127, 11syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
135, 12mpbird 167 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
14 eqidd 2206 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 = 𝐹)
15 eqid 2205 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1615, 8mgpbasg 13688 . . . . . . . 8 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
172, 16syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
18 eqid 2205 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918, 9mgpbasg 13688 . . . . . . . 8 (𝑆 ∈ Ring → 𝐶 = (Base‘(mulGrp‘𝑆)))
201, 19syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2114, 17, 20f1oeq123d 5516 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2221biimpa 296 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2315, 18rhmmhm 13921 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
2423adantr 276 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
25 eqid 2205 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
26 eqid 2205 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2725, 26mhmf1o 13302 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
2827bicomd 141 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2924, 28syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
3022, 29mpbird 167 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))
3113, 30jca 306 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
3218, 15isrhm 13920 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑅) ↔ ((𝑆 ∈ Ring ∧ 𝑅 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))))
334, 31, 32sylanbrc 417 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RingHom 𝑅))
348, 9rhmf 13925 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
3534adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵𝐶)
3635ffnd 5426 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐵)
379, 8rhmf 13925 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑅) → 𝐹:𝐶𝐵)
3837adantl 277 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐶𝐵)
3938ffnd 5426 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐶)
40 dff1o4 5530 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4136, 39, 40sylanbrc 417 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4233, 41impbida 596 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  ccnv 4674   Fn wfn 5266  wf 5267  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  Basecbs 12832   MndHom cmhm 13289   GrpHom cghm 13576  mulGrpcmgp 13682  Ringcrg 13758   RingHom crh 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-grp 13335  df-ghm 13577  df-mgp 13683  df-ur 13722  df-ring 13760  df-rhm 13914
This theorem is referenced by:  isrim  13931
  Copyright terms: Public domain W3C validator