| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringsubdir | GIF version | ||
| Description: Ring multiplication distributes over subtraction. (subdir 8493 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringsubdi.t | ⊢ · = (.r‘𝑅) |
| ringsubdi.m | ⊢ − = (-g‘𝑅) |
| ringsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringsubdir | ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringgrp 13878 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 5 | ringsubdi.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | ringsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2207 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 8 | 6, 7 | grpinvcl 13495 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
| 9 | 4, 5, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
| 10 | ringsubdi.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | eqid 2207 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 12 | ringsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 13 | 6, 11, 12 | ringdir 13896 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
| 14 | 1, 2, 9, 10, 13 | syl13anc 1252 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
| 15 | 6, 12, 7, 1, 5, 10 | ringmneg1 13930 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅)‘𝑌) · 𝑍) = ((invg‘𝑅)‘(𝑌 · 𝑍))) |
| 16 | 15 | oveq2d 5983 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 17 | 14, 16 | eqtrd 2240 | . 2 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 18 | ringsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 19 | 6, 11, 7, 18 | grpsubval 13493 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 20 | 2, 5, 19 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 21 | 20 | oveq1d 5982 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍)) |
| 22 | 6, 12 | ringcl 13890 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 23 | 1, 2, 10, 22 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 24 | 6, 12 | ringcl 13890 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
| 25 | 1, 5, 10, 24 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
| 26 | 6, 11, 7, 18 | grpsubval 13493 | . . 3 ⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 27 | 23, 25, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 28 | 17, 21, 27 | 3eqtr4d 2250 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 .rcmulr 13025 Grpcgrp 13447 invgcminusg 13448 -gcsg 13449 Ringcrg 13873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-mgp 13798 df-ur 13837 df-ring 13875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |