ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsubdir GIF version

Theorem ringsubdir 13934
Description: Ring multiplication distributes over subtraction. (subdir 8493 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringsubdir (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))

Proof of Theorem ringsubdir
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringgrp 13878 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 14 . . . . 5 (𝜑𝑅 ∈ Grp)
5 ringsubdi.y . . . . 5 (𝜑𝑌𝐵)
6 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2207 . . . . . 6 (invg𝑅) = (invg𝑅)
86, 7grpinvcl 13495 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑅)‘𝑌) ∈ 𝐵)
94, 5, 8syl2anc 411 . . . 4 (𝜑 → ((invg𝑅)‘𝑌) ∈ 𝐵)
10 ringsubdi.z . . . 4 (𝜑𝑍𝐵)
11 eqid 2207 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
136, 11, 12ringdir 13896 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
141, 2, 9, 10, 13syl13anc 1252 . . 3 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
156, 12, 7, 1, 5, 10ringmneg1 13930 . . . 4 (𝜑 → (((invg𝑅)‘𝑌) · 𝑍) = ((invg𝑅)‘(𝑌 · 𝑍)))
1615oveq2d 5983 . . 3 (𝜑 → ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
1714, 16eqtrd 2240 . 2 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
196, 11, 7, 18grpsubval 13493 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
202, 5, 19syl2anc 411 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
2120oveq1d 5982 . 2 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍))
226, 12ringcl 13890 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
231, 2, 10, 22syl3anc 1250 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
246, 12ringcl 13890 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
251, 5, 10, 24syl3anc 1250 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
266, 11, 7, 18grpsubval 13493 . . 3 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2723, 25, 26syl2anc 411 . 2 (𝜑 → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2817, 21, 273eqtr4d 2250 1 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  .rcmulr 13025  Grpcgrp 13447  invgcminusg 13448  -gcsg 13449  Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-mgp 13798  df-ur 13837  df-ring 13875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator