![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnglz | GIF version |
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13414. (Revised by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcl.t | ⊢ · = (.r‘𝑅) |
rnglz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rnglz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngabl 13306 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
2 | ablgrp 13245 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
4 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | grpidcl 12988 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
7 | eqid 2189 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
8 | 4, 7, 5 | grplid 12990 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
9 | 3, 6, 8 | syl2anc2 412 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
11 | 10 | oveq1d 5912 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
12 | simpl 109 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Rng) | |
13 | 3, 6 | syl 14 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
14 | 13, 13 | jca 306 | . . . . . 6 ⊢ (𝑅 ∈ Rng → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
15 | 14 | anim1i 340 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) |
16 | df-3an 982 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
17 | 15, 16 | sylibr 134 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
18 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
19 | 4, 7, 18 | rngdir 13312 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
20 | 12, 17, 19 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
21 | 3 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
22 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
23 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
24 | 4, 18 | rngcl 13315 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
25 | 12, 22, 23, 24 | syl3anc 1249 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
26 | 4, 7, 5 | grprid 12991 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
27 | 26 | eqcomd 2195 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
28 | 21, 25, 27 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
29 | 11, 20, 28 | 3eqtr3d 2230 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
30 | 4, 7 | grplcan 13021 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
31 | 21, 25, 22, 25, 30 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
32 | 29, 31 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 .rcmulr 12593 0gc0g 12764 Grpcgrp 12960 Abelcabl 13241 Rngcrng 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-plusg 12605 df-mulr 12606 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-abl 13243 df-mgp 13292 df-rng 13304 |
This theorem is referenced by: rngmneg1 13318 |
Copyright terms: Public domain | W3C validator |