ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglz GIF version

Theorem rnglz 13501
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13599. (Revised by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 13491 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablgrp 13419 . . . . . . 7 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
31, 2syl 14 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
4 rngcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 rnglz.z . . . . . . 7 0 = (0g𝑅)
64, 5grpidcl 13161 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
7 eqid 2196 . . . . . . 7 (+g𝑅) = (+g𝑅)
84, 7, 5grplid 13163 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
93, 6, 8syl2anc2 412 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
109adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
1110oveq1d 5937 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
12 simpl 109 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Rng)
133, 6syl 14 . . . . . . 7 (𝑅 ∈ Rng → 0𝐵)
1413, 13jca 306 . . . . . 6 (𝑅 ∈ Rng → ( 0𝐵0𝐵))
1514anim1i 340 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0𝐵0𝐵) ∧ 𝑋𝐵))
16 df-3an 982 . . . . 5 (( 0𝐵0𝐵𝑋𝐵) ↔ (( 0𝐵0𝐵) ∧ 𝑋𝐵))
1715, 16sylibr 134 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
18 rngcl.t . . . . 5 · = (.r𝑅)
194, 7, 18rngdir 13497 . . . 4 ((𝑅 ∈ Rng ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
2012, 17, 19syl2anc 411 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
213adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
2213adantr 276 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
23 simpr 110 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
244, 18rngcl 13500 . . . . 5 ((𝑅 ∈ Rng ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2512, 22, 23, 24syl3anc 1249 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
264, 7, 5grprid 13164 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2726eqcomd 2202 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2821, 25, 27syl2anc 411 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2911, 20, 283eqtr3d 2237 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
304, 7grplcan 13194 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3121, 25, 22, 25, 30syl13anc 1251 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3229, 31mpbid 147 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  0gc0g 12927  Grpcgrp 13132  Abelcabl 13415  Rngcrng 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-abl 13417  df-mgp 13477  df-rng 13489
This theorem is referenced by:  rngmneg1  13503
  Copyright terms: Public domain W3C validator