| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngmneg1 | GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg1 8421 analog). In contrast to ringmneg1 13609, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2196 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2196 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 13494 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grprinvd 13188 | . . . . 5 ⊢ (𝜑 → (𝑋(+g‘𝑅)(𝑁‘𝑋)) = (0g‘𝑅)) |
| 10 | 9 | oveq1d 5937 | . . . 4 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((0g‘𝑅) · 𝑌)) |
| 11 | rngneglmul.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rnglz 13501 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵) → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2229 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 13500 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 8, 11, 16 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 13181 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 13500 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 20 | 5, 18, 11, 19 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid1 13184 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdir 13497 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌))) |
| 24 | 23 | eqcomd 2202 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 25 | 5, 8, 18, 11, 24 | syl13anc 1251 | . . . . 5 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 26 | 25 | eqeq1d 2205 | . . . 4 ⊢ (𝜑 → (((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 188 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌)) |
| 29 | 28 | eqcomd 2202 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 0gc0g 12927 Grpcgrp 13132 invgcminusg 13133 Rngcrng 13488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-abl 13417 df-mgp 13477 df-rng 13489 |
| This theorem is referenced by: rngm2neg 13505 rngsubdir 13508 |
| Copyright terms: Public domain | W3C validator |