![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngmneg1 | GIF version |
Description: Negation of a product in a non-unital ring (mulneg1 8387 analog). In contrast to ringmneg1 13430, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
Ref | Expression |
---|---|
rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
rngneglmul.t | ⊢ · = (.r‘𝑅) |
rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
rngmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2189 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2189 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
6 | rnggrp 13317 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | rngneglmul.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 7, 8 | grprinvd 13023 | . . . . 5 ⊢ (𝜑 → (𝑋(+g‘𝑅)(𝑁‘𝑋)) = (0g‘𝑅)) |
10 | 9 | oveq1d 5915 | . . . 4 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((0g‘𝑅) · 𝑌)) |
11 | rngneglmul.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
13 | 1, 12, 3 | rnglz 13324 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵) → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
14 | 5, 11, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
15 | 10, 14 | eqtrd 2222 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅)) |
16 | 1, 12 | rngcl 13323 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
17 | 5, 8, 11, 16 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
18 | 1, 4, 7, 8 | grpinvcld 13016 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
19 | 1, 12 | rngcl 13323 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
20 | 5, 18, 11, 19 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
21 | 1, 2, 3, 4 | grpinvid1 13019 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
22 | 7, 17, 20, 21 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
23 | 1, 2, 12 | rngdir 13320 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌))) |
24 | 23 | eqcomd 2195 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
25 | 5, 8, 18, 11, 24 | syl13anc 1251 | . . . . 5 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
26 | 25 | eqeq1d 2198 | . . . 4 ⊢ (𝜑 → (((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
27 | 22, 26 | bitrd 188 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
28 | 15, 27 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌)) |
29 | 28 | eqcomd 2195 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 Basecbs 12523 +gcplusg 12600 .rcmulr 12601 0gc0g 12772 Grpcgrp 12968 invgcminusg 12969 Rngcrng 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-plusg 12613 df-mulr 12614 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-abl 13251 df-mgp 13300 df-rng 13312 |
This theorem is referenced by: rngm2neg 13328 rngsubdir 13331 |
Copyright terms: Public domain | W3C validator |