| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngmneg1 | GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg1 8467 analog). In contrast to ringmneg1 13815, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2205 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2205 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 13700 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grprinvd 13388 | . . . . 5 ⊢ (𝜑 → (𝑋(+g‘𝑅)(𝑁‘𝑋)) = (0g‘𝑅)) |
| 10 | 9 | oveq1d 5959 | . . . 4 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((0g‘𝑅) · 𝑌)) |
| 11 | rngneglmul.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rnglz 13707 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵) → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2238 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 13706 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 8, 11, 16 | syl3anc 1250 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 13381 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 13706 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 20 | 5, 18, 11, 19 | syl3anc 1250 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid1 13384 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdir 13703 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌))) |
| 24 | 23 | eqcomd 2211 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 25 | 5, 8, 18, 11, 24 | syl13anc 1252 | . . . . 5 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 26 | 25 | eqeq1d 2214 | . . . 4 ⊢ (𝜑 → (((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 188 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌)) |
| 29 | 28 | eqcomd 2211 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 +gcplusg 12909 .rcmulr 12910 0gc0g 13088 Grpcgrp 13332 invgcminusg 13333 Rngcrng 13694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-abl 13623 df-mgp 13683 df-rng 13695 |
| This theorem is referenced by: rngm2neg 13711 rngsubdir 13714 |
| Copyright terms: Public domain | W3C validator |