ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmneg1 GIF version

Theorem rngmneg1 13446
Description: Negation of a product in a non-unital ring (mulneg1 8416 analog). In contrast to ringmneg1 13552, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b 𝐵 = (Base‘𝑅)
rngneglmul.t · = (.r𝑅)
rngneglmul.n 𝑁 = (invg𝑅)
rngneglmul.r (𝜑𝑅 ∈ Rng)
rngneglmul.x (𝜑𝑋𝐵)
rngneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
rngmneg1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem rngmneg1
StepHypRef Expression
1 rngneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2193 . . . . . 6 (+g𝑅) = (+g𝑅)
3 eqid 2193 . . . . . 6 (0g𝑅) = (0g𝑅)
4 rngneglmul.n . . . . . 6 𝑁 = (invg𝑅)
5 rngneglmul.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
6 rnggrp 13437 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 14 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 rngneglmul.x . . . . . 6 (𝜑𝑋𝐵)
91, 2, 3, 4, 7, 8grprinvd 13131 . . . . 5 (𝜑 → (𝑋(+g𝑅)(𝑁𝑋)) = (0g𝑅))
109oveq1d 5934 . . . 4 (𝜑 → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = ((0g𝑅) · 𝑌))
11 rngneglmul.y . . . . 5 (𝜑𝑌𝐵)
12 rngneglmul.t . . . . . 6 · = (.r𝑅)
131, 12, 3rnglz 13444 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑌𝐵) → ((0g𝑅) · 𝑌) = (0g𝑅))
145, 11, 13syl2anc 411 . . . 4 (𝜑 → ((0g𝑅) · 𝑌) = (0g𝑅))
1510, 14eqtrd 2226 . . 3 (𝜑 → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅))
161, 12rngcl 13443 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
175, 8, 11, 16syl3anc 1249 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
181, 4, 7, 8grpinvcld 13124 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ 𝐵)
191, 12rngcl 13443 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋) · 𝑌) ∈ 𝐵)
205, 18, 11, 19syl3anc 1249 . . . . 5 (𝜑 → ((𝑁𝑋) · 𝑌) ∈ 𝐵)
211, 2, 3, 4grpinvid1 13127 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅)))
227, 17, 20, 21syl3anc 1249 . . . 4 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅)))
231, 2, 12rngdir 13440 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)))
2423eqcomd 2199 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌))
255, 8, 18, 11, 24syl13anc 1251 . . . . 5 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌))
2625eqeq1d 2202 . . . 4 (𝜑 → (((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅) ↔ ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅)))
2722, 26bitrd 188 . . 3 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅)))
2815, 27mpbird 167 . 2 (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌))
2928eqcomd 2199 1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  0gc0g 12870  Grpcgrp 13075  invgcminusg 13076  Rngcrng 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-abl 13360  df-mgp 13420  df-rng 13432
This theorem is referenced by:  rngm2neg  13448  rngsubdir  13451
  Copyright terms: Public domain W3C validator