ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmneg1 GIF version

Theorem rngmneg1 13824
Description: Negation of a product in a non-unital ring (mulneg1 8502 analog). In contrast to ringmneg1 13930, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b 𝐵 = (Base‘𝑅)
rngneglmul.t · = (.r𝑅)
rngneglmul.n 𝑁 = (invg𝑅)
rngneglmul.r (𝜑𝑅 ∈ Rng)
rngneglmul.x (𝜑𝑋𝐵)
rngneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
rngmneg1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem rngmneg1
StepHypRef Expression
1 rngneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2207 . . . . . 6 (+g𝑅) = (+g𝑅)
3 eqid 2207 . . . . . 6 (0g𝑅) = (0g𝑅)
4 rngneglmul.n . . . . . 6 𝑁 = (invg𝑅)
5 rngneglmul.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
6 rnggrp 13815 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 14 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 rngneglmul.x . . . . . 6 (𝜑𝑋𝐵)
91, 2, 3, 4, 7, 8grprinvd 13503 . . . . 5 (𝜑 → (𝑋(+g𝑅)(𝑁𝑋)) = (0g𝑅))
109oveq1d 5982 . . . 4 (𝜑 → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = ((0g𝑅) · 𝑌))
11 rngneglmul.y . . . . 5 (𝜑𝑌𝐵)
12 rngneglmul.t . . . . . 6 · = (.r𝑅)
131, 12, 3rnglz 13822 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑌𝐵) → ((0g𝑅) · 𝑌) = (0g𝑅))
145, 11, 13syl2anc 411 . . . 4 (𝜑 → ((0g𝑅) · 𝑌) = (0g𝑅))
1510, 14eqtrd 2240 . . 3 (𝜑 → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅))
161, 12rngcl 13821 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
175, 8, 11, 16syl3anc 1250 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
181, 4, 7, 8grpinvcld 13496 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ 𝐵)
191, 12rngcl 13821 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋) · 𝑌) ∈ 𝐵)
205, 18, 11, 19syl3anc 1250 . . . . 5 (𝜑 → ((𝑁𝑋) · 𝑌) ∈ 𝐵)
211, 2, 3, 4grpinvid1 13499 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅)))
227, 17, 20, 21syl3anc 1250 . . . 4 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅)))
231, 2, 12rngdir 13818 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)))
2423eqcomd 2213 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌))
255, 8, 18, 11, 24syl13anc 1252 . . . . 5 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌))
2625eqeq1d 2216 . . . 4 (𝜑 → (((𝑋 · 𝑌)(+g𝑅)((𝑁𝑋) · 𝑌)) = (0g𝑅) ↔ ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅)))
2722, 26bitrd 188 . . 3 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌) ↔ ((𝑋(+g𝑅)(𝑁𝑋)) · 𝑌) = (0g𝑅)))
2815, 27mpbird 167 . 2 (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁𝑋) · 𝑌))
2928eqcomd 2213 1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  .rcmulr 13025  0gc0g 13203  Grpcgrp 13447  invgcminusg 13448  Rngcrng 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-abl 13738  df-mgp 13798  df-rng 13810
This theorem is referenced by:  rngm2neg  13826  rngsubdir  13829
  Copyright terms: Public domain W3C validator