ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgen1zr Unicode version

Theorem srgen1zr 13544
Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b  |-  B  =  ( Base `  R
)
srg1zr.p  |-  .+  =  ( +g  `  R )
srg1zr.t  |-  .*  =  ( .r `  R )
srgen1zr.p  |-  Z  =  ( 0g `  R
)
Assertion
Ref Expression
srgen1zr  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  ( B  ~~  1o  <->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )

Proof of Theorem srgen1zr
StepHypRef Expression
1 srg1zr.b . . . 4  |-  B  =  ( Base `  R
)
2 srgen1zr.p . . . 4  |-  Z  =  ( 0g `  R
)
31, 2srg0cl 13533 . . 3  |-  ( R  e. SRing  ->  Z  e.  B
)
433ad2ant1 1020 . 2  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  Z  e.  B )
5 en1eqsnbi 7015 . . . 4  |-  ( Z  e.  B  ->  ( B  ~~  1o  <->  B  =  { Z } ) )
65adantl 277 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  ~~  1o  <->  B  =  { Z } ) )
7 srg1zr.p . . . 4  |-  .+  =  ( +g  `  R )
8 srg1zr.t . . . 4  |-  .*  =  ( .r `  R )
91, 7, 8srg1zr 13543 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
106, 9bitrd 188 . 2  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  ~~  1o  <->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
114, 10mpdan 421 1  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  ( B  ~~  1o  <->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {csn 3622   <.cop 3625   class class class wbr 4033    X. cxp 4661    Fn wfn 5253   ` cfv 5258   1oc1o 6467    ~~ cen 6797   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927  SRingcsrg 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-plusf 12998  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416  df-mgp 13477  df-srg 13520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator