| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgen1zr | GIF version | ||
| Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| srg1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
| srg1zr.p | ⊢ + = (+g‘𝑅) |
| srg1zr.t | ⊢ ∗ = (.r‘𝑅) |
| srgen1zr.p | ⊢ 𝑍 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| srgen1zr | ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1zr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | srgen1zr.p | . . . 4 ⊢ 𝑍 = (0g‘𝑅) | |
| 3 | 1, 2 | srg0cl 13609 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑍 ∈ 𝐵) |
| 4 | 3 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) |
| 5 | en1eqsnbi 7024 | . . . 4 ⊢ (𝑍 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝑍})) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 ≈ 1o ↔ 𝐵 = {𝑍})) |
| 7 | srg1zr.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 8 | srg1zr.t | . . . 4 ⊢ ∗ = (.r‘𝑅) | |
| 9 | 1, 7, 8 | srg1zr 13619 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| 10 | 6, 9 | bitrd 188 | . 2 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| 11 | 4, 10 | mpdan 421 | 1 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {csn 3623 〈cop 3626 class class class wbr 4034 × cxp 4662 Fn wfn 5254 ‘cfv 5259 1oc1o 6476 ≈ cen 6806 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 0gc0g 12958 SRingcsrg 13595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-plusf 13057 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-cmn 13492 df-mgp 13553 df-srg 13596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |