ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulgt0 Unicode version

Theorem axpre-mulgt0 7688
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7730. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )

Proof of Theorem axpre-mulgt0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7629 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7629 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 breq2 3928 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  <. x ,  0R >.  <->  0  <RR  A ) )
43anbi1d 460 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( (
0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  <->  ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. ) ) )
5 oveq1 5774 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  ( A  x.  <. y ,  0R >. ) )
65breq2d 3936 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  ( <. x ,  0R >.  x.  <. y ,  0R >. )  <->  0  <RR  ( A  x.  <. y ,  0R >. ) ) )
74, 6imbi12d 233 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( 0  <RR  <. x ,  0R >.  /\  0  <RR 
<. y ,  0R >. )  ->  0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. ) )  <->  ( ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) ) ) )
8 breq2 3928 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  B ) )
98anbi2d 459 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( (
0  <RR  A  /\  0  <RR 
<. y ,  0R >. )  <-> 
( 0  <RR  A  /\  0  <RR  B ) ) )
10 oveq2 5775 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  x.  <. y ,  0R >. )  =  ( A  x.  B ) )
1110breq2d 3936 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  ( A  x.  <. y ,  0R >. )  <->  0 
<RR  ( A  x.  B
) ) )
129, 11imbi12d 233 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( 0  <RR  A  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) )  <->  ( (
0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B
) ) ) )
13 df-0 7620 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1413breq1i 3931 . . . . 5  |-  ( 0 
<RR  <. x ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. x ,  0R >. )
15 ltresr 7640 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. x ,  0R >.  <->  0R  <R  x )
1614, 15bitri 183 . . . 4  |-  ( 0 
<RR  <. x ,  0R >.  <-> 
0R  <R  x )
1713breq1i 3931 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
18 ltresr 7640 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1917, 18bitri 183 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
20 mulgt0sr 7579 . . . 4  |-  ( ( 0R  <R  x  /\  0R  <R  y )  ->  0R  <R  ( x  .R  y ) )
2116, 19, 20syl2anb 289 . . 3  |-  ( ( 0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0R  <R  ( x  .R  y
) )
2213a1i 9 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  0  =  <. 0R ,  0R >. )
23 mulresr 7639 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  <. (
x  .R  y ) ,  0R >. )
2422, 23breq12d 3937 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <->  <. 0R ,  0R >.  <RR  <. ( x  .R  y
) ,  0R >. ) )
25 ltresr 7640 . . . 4  |-  ( <. 0R ,  0R >.  <RR  <. (
x  .R  y ) ,  0R >.  <->  0R  <R  ( x  .R  y ) )
2624, 25syl6bb 195 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <-> 
0R  <R  ( x  .R  y ) ) )
2721, 26syl5ibr 155 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( ( 0  <RR  <.
x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  (
<. x ,  0R >.  x. 
<. y ,  0R >. ) ) )
281, 2, 7, 12, 272gencl 2714 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   <.cop 3525   class class class wbr 3924  (class class class)co 5767   R.cnr 7098   0Rc0r 7099    .R cmr 7103    <R cltr 7104   RRcr 7612   0cc0 7613    <RR cltrr 7617    x. cmul 7618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-iltp 7271  df-enr 7527  df-nr 7528  df-plr 7529  df-mr 7530  df-ltr 7531  df-0r 7532  df-m1r 7534  df-c 7619  df-0 7620  df-r 7623  df-mul 7625  df-lt 7626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator