ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulgt0 Unicode version

Theorem axpre-mulgt0 8030
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 8072. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-mulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )

Proof of Theorem axpre-mulgt0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7971 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7971 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 breq2 4058 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  <. x ,  0R >.  <->  0  <RR  A ) )
43anbi1d 465 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( (
0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  <->  ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. ) ) )
5 oveq1 5969 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  ( A  x.  <. y ,  0R >. ) )
65breq2d 4066 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( 0 
<RR  ( <. x ,  0R >.  x.  <. y ,  0R >. )  <->  0  <RR  ( A  x.  <. y ,  0R >. ) ) )
74, 6imbi12d 234 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( 0  <RR  <. x ,  0R >.  /\  0  <RR 
<. y ,  0R >. )  ->  0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. ) )  <->  ( ( 0 
<RR  A  /\  0  <RR  <.
y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) ) ) )
8 breq2 4058 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  B ) )
98anbi2d 464 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( (
0  <RR  A  /\  0  <RR 
<. y ,  0R >. )  <-> 
( 0  <RR  A  /\  0  <RR  B ) ) )
10 oveq2 5970 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  x.  <. y ,  0R >. )  =  ( A  x.  B ) )
1110breq2d 4066 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( 0 
<RR  ( A  x.  <. y ,  0R >. )  <->  0 
<RR  ( A  x.  B
) ) )
129, 11imbi12d 234 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( 0  <RR  A  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  ( A  x.  <. y ,  0R >. ) )  <->  ( (
0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B
) ) ) )
13 df-0 7962 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1413breq1i 4061 . . . . 5  |-  ( 0 
<RR  <. x ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. x ,  0R >. )
15 ltresr 7982 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. x ,  0R >.  <->  0R  <R  x )
1614, 15bitri 184 . . . 4  |-  ( 0 
<RR  <. x ,  0R >.  <-> 
0R  <R  x )
1713breq1i 4061 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
18 ltresr 7982 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1917, 18bitri 184 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
20 mulgt0sr 7921 . . . 4  |-  ( ( 0R  <R  x  /\  0R  <R  y )  ->  0R  <R  ( x  .R  y ) )
2116, 19, 20syl2anb 291 . . 3  |-  ( ( 0  <RR  <. x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0R  <R  ( x  .R  y
) )
2213a1i 9 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  0  =  <. 0R ,  0R >. )
23 mulresr 7981 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  <. (
x  .R  y ) ,  0R >. )
2422, 23breq12d 4067 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <->  <. 0R ,  0R >.  <RR  <. ( x  .R  y
) ,  0R >. ) )
25 ltresr 7982 . . . 4  |-  ( <. 0R ,  0R >.  <RR  <. (
x  .R  y ) ,  0R >.  <->  0R  <R  ( x  .R  y ) )
2624, 25bitrdi 196 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( 0  <RR  ( <.
x ,  0R >.  x. 
<. y ,  0R >. )  <-> 
0R  <R  ( x  .R  y ) ) )
2721, 26imbitrrid 156 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( ( 0  <RR  <.
x ,  0R >.  /\  0  <RR  <. y ,  0R >. )  ->  0  <RR  (
<. x ,  0R >.  x. 
<. y ,  0R >. ) ) )
281, 2, 7, 12, 272gencl 2807 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   <.cop 3641   class class class wbr 4054  (class class class)co 5962   R.cnr 7440   0Rc0r 7441    .R cmr 7445    <R cltr 7446   RRcr 7954   0cc0 7955    <RR cltrr 7959    x. cmul 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609  df-i1p 7610  df-iplp 7611  df-imp 7612  df-iltp 7613  df-enr 7869  df-nr 7870  df-plr 7871  df-mr 7872  df-ltr 7873  df-0r 7874  df-m1r 7876  df-c 7961  df-0 7962  df-r 7965  df-mul 7967  df-lt 7968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator