ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0gcdsq Unicode version

Theorem nn0gcdsq 12722
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nn0gcdsq  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )

Proof of Theorem nn0gcdsq
StepHypRef Expression
1 elnn0 9371 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 elnn0 9371 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
3 sqgcd 12550 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
4 nncn 9118 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
5 abssq 11592 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
64, 5syl 14 . . . . . 6  |-  ( B  e.  NN  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
7 nnz 9465 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  ZZ )
8 gcd0id 12500 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  gcd  B )  =  ( abs `  B
) )
97, 8syl 14 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  B )  =  ( abs `  B
) )
109oveq1d 6016 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( abs `  B ) ^ 2 ) )
11 sq0 10852 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
1211a1i 9 . . . . . . . 8  |-  ( B  e.  NN  ->  (
0 ^ 2 )  =  0 )
1312oveq1d 6016 . . . . . . 7  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( 0  gcd  ( B ^ 2 ) ) )
14 zsqcl 10832 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
15 gcd0id 12500 . . . . . . . 8  |-  ( ( B ^ 2 )  e.  ZZ  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
167, 14, 153syl 17 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
1713, 16eqtrd 2262 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
186, 10, 173eqtr4d 2272 . . . . 5  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
1918adantl 277 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( 0  gcd  B ) ^
2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
20 oveq1 6008 . . . . . . 7  |-  ( A  =  0  ->  ( A  gcd  B )  =  ( 0  gcd  B
) )
2120oveq1d 6016 . . . . . 6  |-  ( A  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( 0  gcd  B ) ^
2 ) )
22 oveq1 6008 . . . . . . 7  |-  ( A  =  0  ->  ( A ^ 2 )  =  ( 0 ^ 2 ) )
2322oveq1d 6016 . . . . . 6  |-  ( A  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
2421, 23eqeq12d 2244 . . . . 5  |-  ( A  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( (
0  gcd  B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) ) )
2524adantr 276 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( 0  gcd 
B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^
2 ) ) ) )
2619, 25mpbird 167 . . 3  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
27 nncn 9118 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
28 abssq 11592 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
2927, 28syl 14 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
30 nnz 9465 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
31 gcdid0 12501 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3230, 31syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3332oveq1d 6016 . . . . . 6  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( abs `  A ) ^ 2 ) )
3411a1i 9 . . . . . . . 8  |-  ( A  e.  NN  ->  (
0 ^ 2 )  =  0 )
3534oveq2d 6017 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( ( A ^ 2 )  gcd  0 ) )
36 zsqcl 10832 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
37 gcdid0 12501 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3830, 36, 373syl 17 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3935, 38eqtrd 2262 . . . . . 6  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( abs `  ( A ^ 2 ) ) )
4029, 33, 393eqtr4d 2272 . . . . 5  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4140adantr 276 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
42 oveq2 6009 . . . . . . 7  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
4342oveq1d 6016 . . . . . 6  |-  ( B  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( A  gcd  0 ) ^
2 ) )
44 oveq1 6008 . . . . . . 7  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
4544oveq2d 6017 . . . . . 6  |-  ( B  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4643, 45eqeq12d 2244 . . . . 5  |-  ( B  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4746adantl 277 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( A  gcd  0 ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4841, 47mpbird 167 . . 3  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
49 gcd0val 12481 . . . . . 6  |-  ( 0  gcd  0 )  =  0
5049oveq1i 6011 . . . . 5  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( 0 ^ 2 )
5111, 11oveq12i 6013 . . . . . 6  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( 0  gcd  0
)
5251, 49eqtri 2250 . . . . 5  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  0
5311, 50, 523eqtr4i 2260 . . . 4  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  (
0 ^ 2 ) )
54 oveq12 6010 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
5554oveq1d 6016 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( 0  gcd  0
) ^ 2 ) )
5622, 44oveqan12d 6020 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) ) )
5753, 55, 563eqtr4a 2288 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
583, 26, 48, 57ccase 970 . 2  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  ( B  e.  NN  \/  B  =  0 ) )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
591, 2, 58syl2anb 291 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ^cexp 10760   abscabs 11508    gcd cgcd 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475
This theorem is referenced by:  zgcdsq  12723
  Copyright terms: Public domain W3C validator