ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0gcdsq Unicode version

Theorem nn0gcdsq 12132
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nn0gcdsq  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )

Proof of Theorem nn0gcdsq
StepHypRef Expression
1 elnn0 9116 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 elnn0 9116 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
3 sqgcd 11962 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
4 nncn 8865 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
5 abssq 11023 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
64, 5syl 14 . . . . . 6  |-  ( B  e.  NN  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
7 nnz 9210 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  ZZ )
8 gcd0id 11912 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  gcd  B )  =  ( abs `  B
) )
97, 8syl 14 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  B )  =  ( abs `  B
) )
109oveq1d 5857 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( abs `  B ) ^ 2 ) )
11 sq0 10545 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
1211a1i 9 . . . . . . . 8  |-  ( B  e.  NN  ->  (
0 ^ 2 )  =  0 )
1312oveq1d 5857 . . . . . . 7  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( 0  gcd  ( B ^ 2 ) ) )
14 zsqcl 10525 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
15 gcd0id 11912 . . . . . . . 8  |-  ( ( B ^ 2 )  e.  ZZ  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
167, 14, 153syl 17 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
1713, 16eqtrd 2198 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
186, 10, 173eqtr4d 2208 . . . . 5  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
1918adantl 275 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( 0  gcd  B ) ^
2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
20 oveq1 5849 . . . . . . 7  |-  ( A  =  0  ->  ( A  gcd  B )  =  ( 0  gcd  B
) )
2120oveq1d 5857 . . . . . 6  |-  ( A  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( 0  gcd  B ) ^
2 ) )
22 oveq1 5849 . . . . . . 7  |-  ( A  =  0  ->  ( A ^ 2 )  =  ( 0 ^ 2 ) )
2322oveq1d 5857 . . . . . 6  |-  ( A  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
2421, 23eqeq12d 2180 . . . . 5  |-  ( A  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( (
0  gcd  B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) ) )
2524adantr 274 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( 0  gcd 
B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^
2 ) ) ) )
2619, 25mpbird 166 . . 3  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
27 nncn 8865 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
28 abssq 11023 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
2927, 28syl 14 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
30 nnz 9210 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
31 gcdid0 11913 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3230, 31syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3332oveq1d 5857 . . . . . 6  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( abs `  A ) ^ 2 ) )
3411a1i 9 . . . . . . . 8  |-  ( A  e.  NN  ->  (
0 ^ 2 )  =  0 )
3534oveq2d 5858 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( ( A ^ 2 )  gcd  0 ) )
36 zsqcl 10525 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
37 gcdid0 11913 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3830, 36, 373syl 17 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3935, 38eqtrd 2198 . . . . . 6  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( abs `  ( A ^ 2 ) ) )
4029, 33, 393eqtr4d 2208 . . . . 5  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4140adantr 274 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
42 oveq2 5850 . . . . . . 7  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
4342oveq1d 5857 . . . . . 6  |-  ( B  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( A  gcd  0 ) ^
2 ) )
44 oveq1 5849 . . . . . . 7  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
4544oveq2d 5858 . . . . . 6  |-  ( B  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4643, 45eqeq12d 2180 . . . . 5  |-  ( B  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4746adantl 275 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( A  gcd  0 ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4841, 47mpbird 166 . . 3  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
49 gcd0val 11893 . . . . . 6  |-  ( 0  gcd  0 )  =  0
5049oveq1i 5852 . . . . 5  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( 0 ^ 2 )
5111, 11oveq12i 5854 . . . . . 6  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( 0  gcd  0
)
5251, 49eqtri 2186 . . . . 5  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  0
5311, 50, 523eqtr4i 2196 . . . 4  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  (
0 ^ 2 ) )
54 oveq12 5851 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
5554oveq1d 5857 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( 0  gcd  0
) ^ 2 ) )
5622, 44oveqan12d 5861 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) ) )
5753, 55, 563eqtr4a 2225 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
583, 26, 48, 57ccase 954 . 2  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  ( B  e.  NN  \/  B  =  0 ) )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
591, 2, 58syl2anb 289 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ^cexp 10454   abscabs 10939    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  zgcdsq  12133
  Copyright terms: Public domain W3C validator