ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0gcdsq Unicode version

Theorem nn0gcdsq 12202
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nn0gcdsq  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )

Proof of Theorem nn0gcdsq
StepHypRef Expression
1 elnn0 9180 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 elnn0 9180 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
3 sqgcd 12032 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
4 nncn 8929 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
5 abssq 11092 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
64, 5syl 14 . . . . . 6  |-  ( B  e.  NN  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
7 nnz 9274 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  ZZ )
8 gcd0id 11982 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  gcd  B )  =  ( abs `  B
) )
97, 8syl 14 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  B )  =  ( abs `  B
) )
109oveq1d 5892 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( abs `  B ) ^ 2 ) )
11 sq0 10613 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
1211a1i 9 . . . . . . . 8  |-  ( B  e.  NN  ->  (
0 ^ 2 )  =  0 )
1312oveq1d 5892 . . . . . . 7  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( 0  gcd  ( B ^ 2 ) ) )
14 zsqcl 10593 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
15 gcd0id 11982 . . . . . . . 8  |-  ( ( B ^ 2 )  e.  ZZ  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
167, 14, 153syl 17 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
1713, 16eqtrd 2210 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
186, 10, 173eqtr4d 2220 . . . . 5  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
1918adantl 277 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( 0  gcd  B ) ^
2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
20 oveq1 5884 . . . . . . 7  |-  ( A  =  0  ->  ( A  gcd  B )  =  ( 0  gcd  B
) )
2120oveq1d 5892 . . . . . 6  |-  ( A  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( 0  gcd  B ) ^
2 ) )
22 oveq1 5884 . . . . . . 7  |-  ( A  =  0  ->  ( A ^ 2 )  =  ( 0 ^ 2 ) )
2322oveq1d 5892 . . . . . 6  |-  ( A  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
2421, 23eqeq12d 2192 . . . . 5  |-  ( A  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( (
0  gcd  B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) ) )
2524adantr 276 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( 0  gcd 
B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^
2 ) ) ) )
2619, 25mpbird 167 . . 3  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
27 nncn 8929 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
28 abssq 11092 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
2927, 28syl 14 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
30 nnz 9274 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
31 gcdid0 11983 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3230, 31syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3332oveq1d 5892 . . . . . 6  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( abs `  A ) ^ 2 ) )
3411a1i 9 . . . . . . . 8  |-  ( A  e.  NN  ->  (
0 ^ 2 )  =  0 )
3534oveq2d 5893 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( ( A ^ 2 )  gcd  0 ) )
36 zsqcl 10593 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
37 gcdid0 11983 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3830, 36, 373syl 17 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3935, 38eqtrd 2210 . . . . . 6  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( abs `  ( A ^ 2 ) ) )
4029, 33, 393eqtr4d 2220 . . . . 5  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4140adantr 276 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
42 oveq2 5885 . . . . . . 7  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
4342oveq1d 5892 . . . . . 6  |-  ( B  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( A  gcd  0 ) ^
2 ) )
44 oveq1 5884 . . . . . . 7  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
4544oveq2d 5893 . . . . . 6  |-  ( B  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4643, 45eqeq12d 2192 . . . . 5  |-  ( B  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4746adantl 277 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( A  gcd  0 ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4841, 47mpbird 167 . . 3  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
49 gcd0val 11963 . . . . . 6  |-  ( 0  gcd  0 )  =  0
5049oveq1i 5887 . . . . 5  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( 0 ^ 2 )
5111, 11oveq12i 5889 . . . . . 6  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( 0  gcd  0
)
5251, 49eqtri 2198 . . . . 5  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  0
5311, 50, 523eqtr4i 2208 . . . 4  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  (
0 ^ 2 ) )
54 oveq12 5886 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
5554oveq1d 5892 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( 0  gcd  0
) ^ 2 ) )
5622, 44oveqan12d 5896 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) ) )
5753, 55, 563eqtr4a 2236 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
583, 26, 48, 57ccase 964 . 2  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  ( B  e.  NN  \/  B  =  0 ) )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
591, 2, 58syl2anb 291 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   ^cexp 10521   abscabs 11008    gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946
This theorem is referenced by:  zgcdsq  12203
  Copyright terms: Public domain W3C validator