| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgrunop | GIF version | ||
| Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
| 3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | vtxex 15661 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V) | |
| 9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (Vtx‘𝐺) ∈ V) |
| 10 | 5, 9 | eqeltrid 2293 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 11 | iedgex 15662 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺) ∈ V) | |
| 12 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) ∈ V) |
| 13 | 3, 12 | eqeltrid 2293 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 14 | iedgex 15662 | . . . . . 6 ⊢ (𝐻 ∈ UHGraph → (iEdg‘𝐻) ∈ V) | |
| 15 | 2, 14 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐻) ∈ V) |
| 16 | 4, 15 | eqeltrid 2293 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 17 | unexg 4494 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸 ∪ 𝐹) ∈ V) | |
| 18 | 13, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
| 19 | opexg 4276 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) | |
| 20 | 10, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 21 | opvtxfv 15665 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 22 | 10, 18, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 23 | opiedgfv 15668 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 24 | 10, 18, 23 | syl2anc 411 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 20, 22, 24 | uhgrun 15726 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 ∩ cin 3166 ∅c0 3461 〈cop 3637 dom cdm 4679 ‘cfv 5276 Vtxcvtx 15655 iEdgciedg 15656 UHGraphcuhgr 15707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sub 8252 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-dec 9512 df-ndx 12879 df-slot 12880 df-base 12882 df-edgf 15648 df-vtx 15657 df-iedg 15658 df-uhgrm 15709 |
| This theorem is referenced by: ushgrunop 15729 |
| Copyright terms: Public domain | W3C validator |