| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgrunop | GIF version | ||
| Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
| 3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | vtxex 15784 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V) | |
| 9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (Vtx‘𝐺) ∈ V) |
| 10 | 5, 9 | eqeltrid 2296 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 11 | iedgex 15785 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺) ∈ V) | |
| 12 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) ∈ V) |
| 13 | 3, 12 | eqeltrid 2296 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 14 | iedgex 15785 | . . . . . 6 ⊢ (𝐻 ∈ UHGraph → (iEdg‘𝐻) ∈ V) | |
| 15 | 2, 14 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐻) ∈ V) |
| 16 | 4, 15 | eqeltrid 2296 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 17 | unexg 4511 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸 ∪ 𝐹) ∈ V) | |
| 18 | 13, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
| 19 | opexg 4293 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) | |
| 20 | 10, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 21 | opvtxfv 15788 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 22 | 10, 18, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 23 | opiedgfv 15791 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 24 | 10, 18, 23 | syl2anc 411 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 20, 22, 24 | uhgrun 15851 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 ∩ cin 3176 ∅c0 3471 〈cop 3649 dom cdm 4696 ‘cfv 5294 Vtxcvtx 15778 iEdgciedg 15779 UHGraphcuhgr 15832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-uhgrm 15834 |
| This theorem is referenced by: ushgrunop 15854 |
| Copyright terms: Public domain | W3C validator |