ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrunop GIF version

Theorem uhgrunop 15895
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uhgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem uhgrunop
StepHypRef Expression
1 uhgrun.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.h . 2 (𝜑𝐻 ∈ UHGraph)
3 uhgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 uhgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 uhgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 uhgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 uhgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 vtxex 15827 . . . . 5 (𝐺 ∈ UHGraph → (Vtx‘𝐺) ∈ V)
91, 8syl 14 . . . 4 (𝜑 → (Vtx‘𝐺) ∈ V)
105, 9eqeltrid 2316 . . 3 (𝜑𝑉 ∈ V)
11 iedgex 15828 . . . . . 6 (𝐺 ∈ UHGraph → (iEdg‘𝐺) ∈ V)
121, 11syl 14 . . . . 5 (𝜑 → (iEdg‘𝐺) ∈ V)
133, 12eqeltrid 2316 . . . 4 (𝜑𝐸 ∈ V)
14 iedgex 15828 . . . . . 6 (𝐻 ∈ UHGraph → (iEdg‘𝐻) ∈ V)
152, 14syl 14 . . . . 5 (𝜑 → (iEdg‘𝐻) ∈ V)
164, 15eqeltrid 2316 . . . 4 (𝜑𝐹 ∈ V)
17 unexg 4534 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸𝐹) ∈ V)
1813, 16, 17syl2anc 411 . . 3 (𝜑 → (𝐸𝐹) ∈ V)
19 opexg 4314 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
2010, 18, 19syl2anc 411 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
21 opvtxfv 15831 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
2210, 18, 21syl2anc 411 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
23 opiedgfv 15834 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
2410, 18, 23syl2anc 411 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
251, 2, 3, 4, 5, 6, 7, 20, 22, 24uhgrun 15894 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  cin 3196  c0 3491  cop 3669  dom cdm 4719  cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  UHGraphcuhgr 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-uhgrm 15877
This theorem is referenced by:  ushgrunop  15897
  Copyright terms: Public domain W3C validator