| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9612 |
. 2
| |
| 2 | 1 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7972 ax-resscn 7973 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5926 df-neg 8202 df-z 9329 df-uz 9604 |
| This theorem is referenced by: infssuzcldc 10327 zsupssdc 10330 seqf1oglem1 10613 cau3 11282 climz 11459 serclim0 11472 climaddc1 11496 climmulc2 11498 climsubc1 11499 climsubc2 11500 climle 11501 climlec2 11508 summodclem2a 11548 summodclem2 11549 zsumdc 11551 fsum3cvg3 11563 iserabs 11642 isumshft 11657 explecnv 11672 clim2prod 11706 prodfclim1 11711 ntrivcvgap 11715 prodmodclem2a 11743 prodmodclem2 11744 zproddc 11746 4sqlem11 12580 exmidunben 12653 lmbrf 14461 lmres 14494 climcncf 14830 2sqlem6 15371 |
| Copyright terms: Public domain | W3C validator |