Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9431 | . 2 | |
2 | 1 | ssriv 3132 | 1 |
Colors of variables: wff set class |
Syntax hints: wss 3102 cfv 5167 cz 9150 cuz 9422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-cnex 7806 ax-resscn 7807 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-neg 8032 df-z 9151 df-uz 9423 |
This theorem is referenced by: cau3 10997 climz 11171 serclim0 11184 climaddc1 11208 climmulc2 11210 climsubc1 11211 climsubc2 11212 climle 11213 climlec2 11220 summodclem2a 11260 summodclem2 11261 zsumdc 11263 fsum3cvg3 11275 iserabs 11354 isumshft 11369 explecnv 11384 clim2prod 11418 prodfclim1 11423 ntrivcvgap 11427 prodmodclem2a 11455 prodmodclem2 11456 zproddc 11458 infssuzcldc 11819 exmidunben 12127 lmbrf 12575 lmres 12608 climcncf 12931 |
Copyright terms: Public domain | W3C validator |