| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9627 |
. 2
| |
| 2 | 1 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: infssuzcldc 10342 zsupssdc 10345 seqf1oglem1 10628 cau3 11297 climz 11474 serclim0 11487 climaddc1 11511 climmulc2 11513 climsubc1 11514 climsubc2 11515 climle 11516 climlec2 11523 summodclem2a 11563 summodclem2 11564 zsumdc 11566 fsum3cvg3 11578 iserabs 11657 isumshft 11672 explecnv 11687 clim2prod 11721 prodfclim1 11726 ntrivcvgap 11730 prodmodclem2a 11758 prodmodclem2 11759 zproddc 11761 4sqlem11 12595 exmidunben 12668 lmbrf 14535 lmres 14568 climcncf 14904 2sqlem6 15445 |
| Copyright terms: Public domain | W3C validator |