| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9610 |
. 2
| |
| 2 | 1 | ssriv 3187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 df-uz 9602 |
| This theorem is referenced by: infssuzcldc 10325 zsupssdc 10328 seqf1oglem1 10611 cau3 11280 climz 11457 serclim0 11470 climaddc1 11494 climmulc2 11496 climsubc1 11497 climsubc2 11498 climle 11499 climlec2 11506 summodclem2a 11546 summodclem2 11547 zsumdc 11549 fsum3cvg3 11561 iserabs 11640 isumshft 11655 explecnv 11670 clim2prod 11704 prodfclim1 11709 ntrivcvgap 11713 prodmodclem2a 11741 prodmodclem2 11742 zproddc 11744 4sqlem11 12570 exmidunben 12643 lmbrf 14451 lmres 14484 climcncf 14820 2sqlem6 15361 |
| Copyright terms: Public domain | W3C validator |