Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9496 | . 2 | |
2 | 1 | ssriv 3151 | 1 |
Colors of variables: wff set class |
Syntax hints: wss 3121 cfv 5198 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: cau3 11079 climz 11255 serclim0 11268 climaddc1 11292 climmulc2 11294 climsubc1 11295 climsubc2 11296 climle 11297 climlec2 11304 summodclem2a 11344 summodclem2 11345 zsumdc 11347 fsum3cvg3 11359 iserabs 11438 isumshft 11453 explecnv 11468 clim2prod 11502 prodfclim1 11507 ntrivcvgap 11511 prodmodclem2a 11539 prodmodclem2 11540 zproddc 11542 infssuzcldc 11906 zsupssdc 11909 exmidunben 12381 lmbrf 13009 lmres 13042 climcncf 13365 2sqlem6 13750 |
Copyright terms: Public domain | W3C validator |