| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9659 |
. 2
| |
| 2 | 1 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: infssuzcldc 10380 zsupssdc 10383 seqf1oglem1 10666 cau3 11459 climz 11636 serclim0 11649 climaddc1 11673 climmulc2 11675 climsubc1 11676 climsubc2 11677 climle 11678 climlec2 11685 summodclem2a 11725 summodclem2 11726 zsumdc 11728 fsum3cvg3 11740 iserabs 11819 isumshft 11834 explecnv 11849 clim2prod 11883 prodfclim1 11888 ntrivcvgap 11892 prodmodclem2a 11920 prodmodclem2 11921 zproddc 11923 4sqlem11 12757 exmidunben 12830 lmbrf 14720 lmres 14753 climcncf 15089 2sqlem6 15630 |
| Copyright terms: Public domain | W3C validator |