| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | Unicode version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9731 |
. 2
| |
| 2 | 1 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: infssuzcldc 10455 zsupssdc 10458 seqf1oglem1 10741 cau3 11626 climz 11803 serclim0 11816 climaddc1 11840 climmulc2 11842 climsubc1 11843 climsubc2 11844 climle 11845 climlec2 11852 summodclem2a 11892 summodclem2 11893 zsumdc 11895 fsum3cvg3 11907 iserabs 11986 isumshft 12001 explecnv 12016 clim2prod 12050 prodfclim1 12055 ntrivcvgap 12059 prodmodclem2a 12087 prodmodclem2 12088 zproddc 12090 4sqlem11 12924 exmidunben 12997 lmbrf 14889 lmres 14922 climcncf 15258 2sqlem6 15799 |
| Copyright terms: Public domain | W3C validator |