ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsfac Unicode version

Theorem dvdsfac 11849
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )

Proof of Theorem dvdsfac
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5511 . . . . 5  |-  ( x  =  K  ->  ( ! `  x )  =  ( ! `  K ) )
21breq2d 4012 . . . 4  |-  ( x  =  K  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  K )
) )
32imbi2d 230 . . 3  |-  ( x  =  K  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 K ) ) ) )
4 fveq2 5511 . . . . 5  |-  ( x  =  y  ->  ( ! `  x )  =  ( ! `  y ) )
54breq2d 4012 . . . 4  |-  ( x  =  y  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  y )
) )
65imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 y ) ) ) )
7 fveq2 5511 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ! `  x )  =  ( ! `  ( y  +  1 ) ) )
87breq2d 4012 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  ( y  +  1 ) ) ) )
98imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
10 fveq2 5511 . . . . 5  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1110breq2d 4012 . . . 4  |-  ( x  =  N  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  N )
) )
1211imbi2d 230 . . 3  |-  ( x  =  N  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 N ) ) ) )
13 nnm1nn0 9206 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
14 faccl 10699 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1513, 14syl 14 . . . . . . 7  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1615nnzd 9363 . . . . . 6  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  ZZ )
17 nnz 9261 . . . . . 6  |-  ( K  e.  NN  ->  K  e.  ZZ )
18 dvdsmul2 11805 . . . . . 6  |-  ( ( ( ! `  ( K  -  1 ) )  e.  ZZ  /\  K  e.  ZZ )  ->  K  ||  ( ( ! `  ( K  -  1 ) )  x.  K ) )
1916, 17, 18syl2anc 411 . . . . 5  |-  ( K  e.  NN  ->  K  ||  ( ( ! `  ( K  -  1
) )  x.  K
) )
20 facnn2 10698 . . . . 5  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
2119, 20breqtrrd 4028 . . . 4  |-  ( K  e.  NN  ->  K  ||  ( ! `  K
) )
2221a1i 9 . . 3  |-  ( K  e.  ZZ  ->  ( K  e.  NN  ->  K 
||  ( ! `  K ) ) )
2317adantl 277 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  K  e.  ZZ )
24 elnnuz 9553 . . . . . . . . . . . 12  |-  ( K  e.  NN  <->  K  e.  ( ZZ>= `  1 )
)
25 uztrn 9533 . . . . . . . . . . . 12  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  1 )
)  ->  y  e.  ( ZZ>= `  1 )
)
2624, 25sylan2b 287 . . . . . . . . . . 11  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ( ZZ>= `  1 )
)
27 elnnuz 9553 . . . . . . . . . . 11  |-  ( y  e.  NN  <->  y  e.  ( ZZ>= `  1 )
)
2826, 27sylibr 134 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN )
2928nnnn0d 9218 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN0 )
30 faccl 10699 . . . . . . . . 9  |-  ( y  e.  NN0  ->  ( ! `
 y )  e.  NN )
3129, 30syl 14 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  NN )
3231nnzd 9363 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  ZZ )
3328nnzd 9363 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ZZ )
3433peano2zd 9367 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  (
y  +  1 )  e.  ZZ )
35 dvdsmultr1 11822 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( ! `  y )  e.  ZZ  /\  (
y  +  1 )  e.  ZZ )  -> 
( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  ( y  +  1 ) ) ) )
3623, 32, 34, 35syl3anc 1238 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  (
y  +  1 ) ) ) )
37 facp1 10694 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ! `
 ( y  +  1 ) )  =  ( ( ! `  y )  x.  (
y  +  1 ) ) )
3829, 37syl 14 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  ( y  +  1 ) )  =  ( ( ! `
 y )  x.  ( y  +  1 ) ) )
3938breq2d 4012 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  ( y  +  1 ) )  <->  K  ||  (
( ! `  y
)  x.  ( y  +  1 ) ) ) )
4036, 39sylibrd 169 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ! `  (
y  +  1 ) ) ) )
4140ex 115 . . . 4  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  ( K  ||  ( ! `  y
)  ->  K  ||  ( ! `  ( y  +  1 ) ) ) ) )
4241a2d 26 . . 3  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( ( K  e.  NN  ->  K 
||  ( ! `  y ) )  -> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
433, 6, 9, 12, 22, 42uzind4 9577 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  K  ||  ( ! `  N )
) )
4443impcom 125 1  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1c1 7803    + caddc 7805    x. cmul 7807    - cmin 8118   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   !cfa 10689    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-fac 10690  df-dvds 11779
This theorem is referenced by:  prmunb  12343
  Copyright terms: Public domain W3C validator