ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsfac Unicode version

Theorem dvdsfac 11400
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )

Proof of Theorem dvdsfac
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5373 . . . . 5  |-  ( x  =  K  ->  ( ! `  x )  =  ( ! `  K ) )
21breq2d 3905 . . . 4  |-  ( x  =  K  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  K )
) )
32imbi2d 229 . . 3  |-  ( x  =  K  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 K ) ) ) )
4 fveq2 5373 . . . . 5  |-  ( x  =  y  ->  ( ! `  x )  =  ( ! `  y ) )
54breq2d 3905 . . . 4  |-  ( x  =  y  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  y )
) )
65imbi2d 229 . . 3  |-  ( x  =  y  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 y ) ) ) )
7 fveq2 5373 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ! `  x )  =  ( ! `  ( y  +  1 ) ) )
87breq2d 3905 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  ( y  +  1 ) ) ) )
98imbi2d 229 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
10 fveq2 5373 . . . . 5  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1110breq2d 3905 . . . 4  |-  ( x  =  N  ->  ( K  ||  ( ! `  x )  <->  K  ||  ( ! `  N )
) )
1211imbi2d 229 . . 3  |-  ( x  =  N  ->  (
( K  e.  NN  ->  K  ||  ( ! `
 x ) )  <-> 
( K  e.  NN  ->  K  ||  ( ! `
 N ) ) ) )
13 nnm1nn0 8916 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
14 faccl 10368 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1513, 14syl 14 . . . . . . 7  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1615nnzd 9070 . . . . . 6  |-  ( K  e.  NN  ->  ( ! `  ( K  -  1 ) )  e.  ZZ )
17 nnz 8971 . . . . . 6  |-  ( K  e.  NN  ->  K  e.  ZZ )
18 dvdsmul2 11358 . . . . . 6  |-  ( ( ( ! `  ( K  -  1 ) )  e.  ZZ  /\  K  e.  ZZ )  ->  K  ||  ( ( ! `  ( K  -  1 ) )  x.  K ) )
1916, 17, 18syl2anc 406 . . . . 5  |-  ( K  e.  NN  ->  K  ||  ( ( ! `  ( K  -  1
) )  x.  K
) )
20 facnn2 10367 . . . . 5  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
2119, 20breqtrrd 3919 . . . 4  |-  ( K  e.  NN  ->  K  ||  ( ! `  K
) )
2221a1i 9 . . 3  |-  ( K  e.  ZZ  ->  ( K  e.  NN  ->  K 
||  ( ! `  K ) ) )
2317adantl 273 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  K  e.  ZZ )
24 elnnuz 9258 . . . . . . . . . . . 12  |-  ( K  e.  NN  <->  K  e.  ( ZZ>= `  1 )
)
25 uztrn 9238 . . . . . . . . . . . 12  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  1 )
)  ->  y  e.  ( ZZ>= `  1 )
)
2624, 25sylan2b 283 . . . . . . . . . . 11  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ( ZZ>= `  1 )
)
27 elnnuz 9258 . . . . . . . . . . 11  |-  ( y  e.  NN  <->  y  e.  ( ZZ>= `  1 )
)
2826, 27sylibr 133 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN )
2928nnnn0d 8928 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  NN0 )
30 faccl 10368 . . . . . . . . 9  |-  ( y  e.  NN0  ->  ( ! `
 y )  e.  NN )
3129, 30syl 14 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  NN )
3231nnzd 9070 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  y )  e.  ZZ )
3328nnzd 9070 . . . . . . . 8  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  y  e.  ZZ )
3433peano2zd 9074 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  (
y  +  1 )  e.  ZZ )
35 dvdsmultr1 11373 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( ! `  y )  e.  ZZ  /\  (
y  +  1 )  e.  ZZ )  -> 
( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  ( y  +  1 ) ) ) )
3623, 32, 34, 35syl3anc 1197 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ( ! `  y )  x.  (
y  +  1 ) ) ) )
37 facp1 10363 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ! `
 ( y  +  1 ) )  =  ( ( ! `  y )  x.  (
y  +  1 ) ) )
3829, 37syl 14 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( ! `  ( y  +  1 ) )  =  ( ( ! `
 y )  x.  ( y  +  1 ) ) )
3938breq2d 3905 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  ( y  +  1 ) )  <->  K  ||  (
( ! `  y
)  x.  ( y  +  1 ) ) ) )
4036, 39sylibrd 168 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  K )  /\  K  e.  NN )  ->  ( K  ||  ( ! `  y )  ->  K  ||  ( ! `  (
y  +  1 ) ) ) )
4140ex 114 . . . 4  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  ( K  ||  ( ! `  y
)  ->  K  ||  ( ! `  ( y  +  1 ) ) ) ) )
4241a2d 26 . . 3  |-  ( y  e.  ( ZZ>= `  K
)  ->  ( ( K  e.  NN  ->  K 
||  ( ! `  y ) )  -> 
( K  e.  NN  ->  K  ||  ( ! `
 ( y  +  1 ) ) ) ) )
433, 6, 9, 12, 22, 42uzind4 9279 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( K  e.  NN  ->  K  ||  ( ! `  N )
) )
4443impcom 124 1  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  K  ||  ( ! `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   1c1 7542    + caddc 7544    x. cmul 7546    - cmin 7850   NNcn 8624   NN0cn0 8875   ZZcz 8952   ZZ>=cuz 9222   !cfa 10358    || cdvds 11335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-seqfrec 10106  df-fac 10359  df-dvds 11336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator