ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratgt0 Unicode version

Theorem cvgratgt0 11560
Description: Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms beyond some index  B, then the infinite sum of the terms of 
F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
Hypotheses
Ref Expression
cvgrat.1  |-  Z  =  ( ZZ>= `  M )
cvgrat.2  |-  W  =  ( ZZ>= `  N )
cvgrat.3  |-  ( ph  ->  A  e.  RR )
cvgrat.4  |-  ( ph  ->  A  <  1 )
cvgrat.gt0  |-  ( ph  ->  0  <  A )
cvgrat.5  |-  ( ph  ->  N  e.  Z )
cvgrat.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
cvgrat.7  |-  ( (
ph  /\  k  e.  W )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
Assertion
Ref Expression
cvgratgt0  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, W    k, Z

Proof of Theorem cvgratgt0
StepHypRef Expression
1 cvgrat.2 . . 3  |-  W  =  ( ZZ>= `  N )
2 cvgrat.5 . . . 4  |-  ( ph  ->  N  e.  Z )
3 eluzelz 9556 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 cvgrat.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
53, 4eleq2s 2284 . . . 4  |-  ( N  e.  Z  ->  N  e.  ZZ )
62, 5syl 14 . . 3  |-  ( ph  ->  N  e.  ZZ )
7 cvgrat.3 . . 3  |-  ( ph  ->  A  e.  RR )
8 cvgrat.4 . . 3  |-  ( ph  ->  A  <  1 )
9 cvgrat.gt0 . . 3  |-  ( ph  ->  0  <  A )
101eleq2i 2256 . . . . . . 7  |-  ( k  e.  W  <->  k  e.  ( ZZ>= `  N )
)
1110biimpi 120 . . . . . 6  |-  ( k  e.  W  ->  k  e.  ( ZZ>= `  N )
)
122, 4eleqtrdi 2282 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
13 uztrn 9563 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
1411, 12, 13syl2anr 290 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  ( ZZ>= `  M )
)
1514, 4eleqtrrdi 2283 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  Z )
16 cvgrat.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1715, 16syldan 282 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  e.  CC )
18 cvgrat.7 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
191, 6, 7, 8, 9, 17, 18cvgratz 11559 . 2  |-  ( ph  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
204, 2, 16iserex 11366 . 2  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
2119, 20mpbird 167 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   class class class wbr 4018   dom cdm 4641   ` cfv 5231  (class class class)co 5891   CCcc 7828   RRcr 7829   0cc0 7830   1c1 7831    + caddc 7833    x. cmul 7835    < clt 8011    <_ cle 8012   ZZcz 9272   ZZ>=cuz 9547    seqcseq 10464   abscabs 11025    ~~> cli 11305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-q 9639  df-rp 9673  df-ico 9913  df-fz 10028  df-fzo 10162  df-seqfrec 10465  df-exp 10539  df-ihash 10775  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027  df-clim 11306  df-sumdc 11381
This theorem is referenced by:  efcllemp  11685
  Copyright terms: Public domain W3C validator