ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  o1p1e2 GIF version

Theorem o1p1e2 6318
Description: 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
o1p1e2 (1o +o 1o) = 2o

Proof of Theorem o1p1e2
StepHypRef Expression
1 1on 6274 . . 3 1o ∈ On
2 oa1suc 6317 . . 3 (1o ∈ On → (1o +o 1o) = suc 1o)
31, 2ax-mp 7 . 2 (1o +o 1o) = suc 1o
4 df-2o 6268 . 2 2o = suc 1o
53, 4eqtr4i 2138 1 (1o +o 1o) = 2o
Colors of variables: wff set class
Syntax hints:   = wceq 1314  wcel 1463  Oncon0 4245  suc csuc 4247  (class class class)co 5728  1oc1o 6260  2oc2o 6261   +o coa 6264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271
This theorem is referenced by:  prarloclemarch2  7175  prarloclemlt  7249
  Copyright terms: Public domain W3C validator