Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oeicl | GIF version |
Description: Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
oeicl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeiv 6424 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
2 | 1on 6391 | . . . 4 ⊢ 1o ∈ On | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → 1o ∈ On) |
4 | vex 2729 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | omcl 6429 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ·o 𝐴) ∈ On) | |
6 | oveq1 5849 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐴) = (𝑦 ·o 𝐴)) | |
7 | eqid 2165 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) | |
8 | 6, 7 | fvmptg 5562 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ (𝑦 ·o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴)) |
9 | 4, 5, 8 | sylancr 411 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴)) |
10 | 9, 5 | eqeltrd 2243 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
11 | 10 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
12 | 11 | ralrimiva 2539 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
13 | 3, 12 | rdgon 6354 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ On) |
14 | 1, 13 | eqeltrd 2243 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ↦ cmpt 4043 Oncon0 4341 ‘cfv 5188 (class class class)co 5842 reccrdg 6337 1oc1o 6377 ·o comu 6382 ↑o coei 6383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-oexpi 6390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |