ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeicl GIF version

Theorem oeicl 6606
Description: Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oeicl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)

Proof of Theorem oeicl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oeiv 6600 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
2 1on 6567 . . . 4 1o ∈ On
32a1i 9 . . 3 (𝐴 ∈ On → 1o ∈ On)
4 vex 2802 . . . . . . 7 𝑦 ∈ V
5 omcl 6605 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ·o 𝐴) ∈ On)
6 oveq1 6007 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ·o 𝐴) = (𝑦 ·o 𝐴))
7 eqid 2229 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
86, 7fvmptg 5709 . . . . . . 7 ((𝑦 ∈ V ∧ (𝑦 ·o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴))
94, 5, 8sylancr 414 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴))
109, 5eqeltrd 2306 . . . . 5 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
1110ancoms 268 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
1211ralrimiva 2603 . . 3 (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
133, 12rdgon 6530 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ On)
141, 13eqeltrd 2306 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4144  Oncon0 4453  cfv 5317  (class class class)co 6000  reccrdg 6513  1oc1o 6553   ·o comu 6558  o coei 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-oexpi 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator