ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeicl GIF version

Theorem oeicl 6326
Description: Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oeicl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)

Proof of Theorem oeicl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oeiv 6320 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
2 1on 6288 . . . 4 1o ∈ On
32a1i 9 . . 3 (𝐴 ∈ On → 1o ∈ On)
4 vex 2663 . . . . . . 7 𝑦 ∈ V
5 omcl 6325 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ·o 𝐴) ∈ On)
6 oveq1 5749 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ·o 𝐴) = (𝑦 ·o 𝐴))
7 eqid 2117 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
86, 7fvmptg 5465 . . . . . . 7 ((𝑦 ∈ V ∧ (𝑦 ·o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴))
94, 5, 8sylancr 410 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴))
109, 5eqeltrd 2194 . . . . 5 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
1110ancoms 266 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
1211ralrimiva 2482 . . 3 (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On)
133, 12rdgon 6251 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ On)
141, 13eqeltrd 2194 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  Vcvv 2660  cmpt 3959  Oncon0 4255  cfv 5093  (class class class)co 5742  reccrdg 6234  1oc1o 6274   ·o comu 6279  o coei 6280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-oexpi 6287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator