![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oeicl | GIF version |
Description: Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
oeicl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeiv 6509 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
2 | 1on 6476 | . . . 4 ⊢ 1o ∈ On | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → 1o ∈ On) |
4 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | omcl 6514 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ·o 𝐴) ∈ On) | |
6 | oveq1 5925 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐴) = (𝑦 ·o 𝐴)) | |
7 | eqid 2193 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) | |
8 | 6, 7 | fvmptg 5633 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ (𝑦 ·o 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴)) |
9 | 4, 5, 8 | sylancr 414 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) = (𝑦 ·o 𝐴)) |
10 | 9, 5 | eqeltrd 2270 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
11 | 10 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
12 | 11 | ralrimiva 2567 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘𝑦) ∈ On) |
13 | 3, 12 | rdgon 6439 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ On) |
14 | 1, 13 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4090 Oncon0 4394 ‘cfv 5254 (class class class)co 5918 reccrdg 6422 1oc1o 6462 ·o comu 6467 ↑o coei 6468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-oexpi 6475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |