ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem18 GIF version

Theorem pythagtriplem18 12799
Description: Lemma for pythagtrip 12801. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚,𝑛   𝐶,𝑚,𝑛

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2229 . . 3 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21pythagtriplem13 12794 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
3 eqid 2229 . . 3 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
43pythagtriplem11 12792 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
53, 1pythagtriplem15 12796 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
63, 1pythagtriplem16 12797 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
73, 1pythagtriplem17 12798 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
8 oveq1 6007 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑛↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))
98oveq2d 6016 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − (𝑛↑2)) = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
109eqeq2d 2241 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − (𝑛↑2)) ↔ 𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
11 oveq2 6008 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑚 · 𝑛) = (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
1211oveq2d 6016 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · 𝑛)) = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
1312eqeq2d 2241 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · 𝑛)) ↔ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
148oveq2d 6016 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + (𝑛↑2)) = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1514eqeq2d 2241 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + (𝑛↑2)) ↔ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
1610, 13, 153anbi123d 1346 . . 3 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))) ↔ (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
17 oveq1 6007 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2))
1817oveq1d 6015 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1918eqeq2d 2241 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
20 oveq1 6007 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
2120oveq2d 6016 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
2221eqeq2d 2241 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ↔ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
2317oveq1d 6015 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
2423eqeq2d 2241 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
2519, 22, 243anbi123d 1346 . . 3 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))) ↔ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
2616, 25rspc2ev 2922 . 2 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
272, 4, 5, 6, 7, 26syl113anc 1283 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998   · cmul 8000  cmin 8313   / cdiv 8815  cn 9106  2c2 9157  cexp 10755  csqrt 11502  cdvds 12293   gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625
This theorem is referenced by:  pythagtriplem19  12800
  Copyright terms: Public domain W3C validator