Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwodc | GIF version |
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.) |
Ref | Expression |
---|---|
nnwodc | ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmindc 11963 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) | |
2 | 1 | 3com23 1199 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
3 | simpl1 990 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℕ) | |
4 | simpl3 992 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) | |
5 | simpr 109 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
6 | nnminle 11964 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) | |
7 | 3, 4, 5, 6 | syl3anc 1228 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) |
8 | 7 | ralrimiva 2538 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) |
9 | breq1 3984 | . . . 4 ⊢ (𝑥 = inf(𝐴, ℝ, < ) → (𝑥 ≤ 𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦)) | |
10 | 9 | ralbidv 2465 | . . 3 ⊢ (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)) |
11 | 10 | rspcev 2829 | . 2 ⊢ ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
12 | 2, 8, 11 | syl2anc 409 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2443 ∃wrex 2444 ⊆ wss 3115 class class class wbr 3981 infcinf 6944 ℝcr 7748 < clt 7929 ≤ cle 7930 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 |
This theorem is referenced by: uzwodc 11966 nnwofdc 11967 |
Copyright terms: Public domain | W3C validator |