![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnwodc | GIF version |
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.) |
Ref | Expression |
---|---|
nnwodc | ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmindc 12174 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) | |
2 | 1 | 3com23 1211 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
3 | simpl1 1002 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℕ) | |
4 | simpl3 1004 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) | |
5 | simpr 110 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
6 | nnminle 12175 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) |
8 | 7 | ralrimiva 2567 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) |
9 | breq1 4033 | . . . 4 ⊢ (𝑥 = inf(𝐴, ℝ, < ) → (𝑥 ≤ 𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦)) | |
10 | 9 | ralbidv 2494 | . . 3 ⊢ (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)) |
11 | 10 | rspcev 2865 | . 2 ⊢ ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
12 | 2, 8, 11 | syl2anc 411 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 infcinf 7044 ℝcr 7873 < clt 8056 ≤ cle 8057 ℕcn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: uzwodc 12177 nnwofdc 12178 |
Copyright terms: Public domain | W3C validator |