ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwodc GIF version

Theorem nnwodc 12203
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.)
Assertion
Ref Expression
nnwodc ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝐴,𝑗,𝑤,𝑦   𝑥,𝐴,𝑦

Proof of Theorem nnwodc
StepHypRef Expression
1 nnmindc 12201 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴 ∧ ∃𝑤 𝑤𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
213com23 1211 . 2 ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3 simpl1 1002 . . . 4 (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) ∧ 𝑦𝐴) → 𝐴 ⊆ ℕ)
4 simpl3 1004 . . . 4 (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) ∧ 𝑦𝐴) → ∀𝑗 ∈ ℕ DECID 𝑗𝐴)
5 simpr 110 . . . 4 (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
6 nnminle 12202 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
73, 4, 5, 6syl3anc 1249 . . 3 (((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
87ralrimiva 2570 . 2 ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
9 breq1 4036 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
109ralbidv 2497 . . 3 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
1110rspcev 2868 . 2 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
122, 8, 11syl2anc 411 1 ((𝐴 ⊆ ℕ ∧ ∃𝑤 𝑤𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4033  infcinf 7049  cr 7878   < clt 8061  cle 8062  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  uzwodc  12204  nnwofdc  12205
  Copyright terms: Public domain W3C validator