ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgrmhm GIF version

Theorem srgrmhm 12970
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srgrmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srgrmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 12943 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 306 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 276 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . . 7 · = (.r𝑅)
64, 5srgcl 12946 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763com23 1209 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
873expa 1203 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 5663 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 3anrot 983 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑎𝐵𝑏𝐵𝑋𝐵))
11 3anass 982 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
1210, 11bitr3i 186 . . . . . . 7 ((𝑎𝐵𝑏𝐵𝑋𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
13 eqid 2175 . . . . . . . 8 (+g𝑅) = (+g𝑅)
144, 13, 5srgdir 12951 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵𝑋𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1512, 14sylan2br 288 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1615anassrs 400 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
17 eqid 2175 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
18 oveq1 5872 . . . . . 6 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g𝑅)𝑏) · 𝑋))
194, 13srgacl 12958 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
20193expb 1204 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
2120adantlr 477 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
22 simpll 527 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ SRing)
23 simplr 528 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑋𝐵)
244, 5srgcl 12946 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵𝑋𝐵) → ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ 𝐵)
2522, 21, 23, 24syl3anc 1238 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ 𝐵)
2617, 18, 21, 25fvmptd3 5601 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
27 oveq1 5872 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋))
28 simprl 529 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
294, 5srgcl 12946 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑋𝐵) → (𝑎 · 𝑋) ∈ 𝐵)
3022, 28, 23, 29syl3anc 1238 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑋) ∈ 𝐵)
3117, 27, 28, 30fvmptd3 5601 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋))
32 oveq1 5872 . . . . . . 7 (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋))
33 simprr 531 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
344, 5srgcl 12946 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑏𝐵𝑋𝐵) → (𝑏 · 𝑋) ∈ 𝐵)
3522, 33, 23, 34syl3anc 1238 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑏 · 𝑋) ∈ 𝐵)
3617, 32, 33, 35fvmptd3 5601 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋))
3731, 36oveq12d 5883 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3816, 26, 373eqtr4d 2218 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
3938ralrimivva 2557 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
40 oveq1 5872 . . . . 5 (𝑥 = (0g𝑅) → (𝑥 · 𝑋) = ((0g𝑅) · 𝑋))
41 eqid 2175 . . . . . . 7 (0g𝑅) = (0g𝑅)
424, 41srg0cl 12953 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
4342adantr 276 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
44 simpl 109 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → 𝑅 ∈ SRing)
45 simpr 110 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → 𝑋𝐵)
464, 5srgcl 12946 . . . . . 6 ((𝑅 ∈ SRing ∧ (0g𝑅) ∈ 𝐵𝑋𝐵) → ((0g𝑅) · 𝑋) ∈ 𝐵)
4744, 43, 45, 46syl3anc 1238 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) ∈ 𝐵)
4817, 40, 43, 47fvmptd3 5601 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
494, 5, 41srglz 12961 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
5048, 49eqtrd 2208 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))
519, 39, 503jca 1177 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅)))
524, 4, 13, 13, 41, 41ismhm 12715 . 2 ((𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))))
533, 51, 52sylanbrc 417 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  wral 2453  cmpt 4059  wf 5204  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  .rcmulr 12493  0gc0g 12626  Mndcmnd 12682   MndHom cmhm 12711  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mhm 12713  df-cmn 12886  df-mgp 12926  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator