| Step | Hyp | Ref
 | Expression | 
| 1 |   | srgmnd 13523 | 
. . . 4
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | 
| 2 | 1, 1 | jca 306 | 
. . 3
⊢ (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) | 
| 3 | 2 | adantr 276 | 
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) | 
| 4 |   | srglmhm.b | 
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) | 
| 5 |   | srglmhm.t | 
. . . . . . 7
⊢  · =
(.r‘𝑅) | 
| 6 | 4, 5 | srgcl 13526 | 
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 7 | 6 | 3com23 1211 | 
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 8 | 7 | 3expa 1205 | 
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 9 | 8 | fmpttd 5717 | 
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) | 
| 10 |   | 3anrot 985 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | 
| 11 |   | 3anass 984 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) | 
| 12 | 10, 11 | bitr3i 186 | 
. . . . . . 7
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) | 
| 13 |   | eqid 2196 | 
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 14 | 4, 13, 5 | srgdir 13531 | 
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) | 
| 15 | 12, 14 | sylan2br 288 | 
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) | 
| 16 | 15 | anassrs 400 | 
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) | 
| 17 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) | 
| 18 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) | 
| 19 | 4, 13 | srgacl 13538 | 
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) | 
| 20 | 19 | 3expb 1206 | 
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) | 
| 21 | 20 | adantlr 477 | 
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) | 
| 22 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ SRing) | 
| 23 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 24 | 4, 5 | srgcl 13526 | 
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎(+g‘𝑅)𝑏) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) ∈ 𝐵) | 
| 25 | 22, 21, 23, 24 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) ∈ 𝐵) | 
| 26 | 17, 18, 21, 25 | fvmptd3 5655 | 
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) | 
| 27 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋)) | 
| 28 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | 
| 29 | 4, 5 | srgcl 13526 | 
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑎 · 𝑋) ∈ 𝐵) | 
| 30 | 22, 28, 23, 29 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑋) ∈ 𝐵) | 
| 31 | 17, 27, 28, 30 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋)) | 
| 32 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋)) | 
| 33 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | 
| 34 | 4, 5 | srgcl 13526 | 
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑏 · 𝑋) ∈ 𝐵) | 
| 35 | 22, 33, 23, 34 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑏 · 𝑋) ∈ 𝐵) | 
| 36 | 17, 32, 33, 35 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋)) | 
| 37 | 31, 36 | oveq12d 5940 | 
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) | 
| 38 | 16, 26, 37 | 3eqtr4d 2239 | 
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) | 
| 39 | 38 | ralrimivva 2579 | 
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) | 
| 40 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑥 = (0g‘𝑅) → (𝑥 · 𝑋) = ((0g‘𝑅) · 𝑋)) | 
| 41 |   | eqid 2196 | 
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 42 | 4, 41 | srg0cl 13533 | 
. . . . . 6
⊢ (𝑅 ∈ SRing →
(0g‘𝑅)
∈ 𝐵) | 
| 43 | 42 | adantr 276 | 
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (0g‘𝑅) ∈ 𝐵) | 
| 44 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ SRing) | 
| 45 |   | simpr 110 | 
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 46 | 4, 5 | srgcl 13526 | 
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧
(0g‘𝑅)
∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) ∈ 𝐵) | 
| 47 | 44, 43, 45, 46 | syl3anc 1249 | 
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) ∈ 𝐵) | 
| 48 | 17, 40, 43, 47 | fvmptd3 5655 | 
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = ((0g‘𝑅) · 𝑋)) | 
| 49 | 4, 5, 41 | srglz 13541 | 
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) | 
| 50 | 48, 49 | eqtrd 2229 | 
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)) | 
| 51 | 9, 39, 50 | 3jca 1179 | 
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅))) | 
| 52 | 4, 4, 13, 13, 41, 41 | ismhm 13093 | 
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)))) | 
| 53 | 3, 51, 52 | sylanbrc 417 | 
1
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅)) |