Step | Hyp | Ref
| Expression |
1 | | srgmnd 12943 |
. . . 4
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
2 | 1, 1 | jca 306 |
. . 3
⊢ (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
3 | 2 | adantr 276 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
4 | | srglmhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
5 | | srglmhm.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
6 | 4, 5 | srgcl 12946 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
7 | 6 | 3com23 1209 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
8 | 7 | 3expa 1203 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
9 | 8 | fmpttd 5663 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
10 | | 3anrot 983 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
11 | | 3anass 982 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
12 | 10, 11 | bitr3i 186 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
13 | | eqid 2175 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
14 | 4, 13, 5 | srgdir 12951 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
15 | 12, 14 | sylan2br 288 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
16 | 15 | anassrs 400 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
17 | | eqid 2175 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) |
18 | | oveq1 5872 |
. . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) |
19 | 4, 13 | srgacl 12958 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
20 | 19 | 3expb 1204 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
21 | 20 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
22 | | simpll 527 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ SRing) |
23 | | simplr 528 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
24 | 4, 5 | srgcl 12946 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎(+g‘𝑅)𝑏) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) ∈ 𝐵) |
25 | 22, 21, 23, 24 | syl3anc 1238 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) ∈ 𝐵) |
26 | 17, 18, 21, 25 | fvmptd3 5601 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) |
27 | | oveq1 5872 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋)) |
28 | | simprl 529 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
29 | 4, 5 | srgcl 12946 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑎 · 𝑋) ∈ 𝐵) |
30 | 22, 28, 23, 29 | syl3anc 1238 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑋) ∈ 𝐵) |
31 | 17, 27, 28, 30 | fvmptd3 5601 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋)) |
32 | | oveq1 5872 |
. . . . . . 7
⊢ (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋)) |
33 | | simprr 531 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
34 | 4, 5 | srgcl 12946 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑏 · 𝑋) ∈ 𝐵) |
35 | 22, 33, 23, 34 | syl3anc 1238 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑏 · 𝑋) ∈ 𝐵) |
36 | 17, 32, 33, 35 | fvmptd3 5601 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋)) |
37 | 31, 36 | oveq12d 5883 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
38 | 16, 26, 37 | 3eqtr4d 2218 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) |
39 | 38 | ralrimivva 2557 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) |
40 | | oveq1 5872 |
. . . . 5
⊢ (𝑥 = (0g‘𝑅) → (𝑥 · 𝑋) = ((0g‘𝑅) · 𝑋)) |
41 | | eqid 2175 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
42 | 4, 41 | srg0cl 12953 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(0g‘𝑅)
∈ 𝐵) |
43 | 42 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (0g‘𝑅) ∈ 𝐵) |
44 | | simpl 109 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ SRing) |
45 | | simpr 110 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
46 | 4, 5 | srgcl 12946 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧
(0g‘𝑅)
∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) ∈ 𝐵) |
47 | 44, 43, 45, 46 | syl3anc 1238 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) ∈ 𝐵) |
48 | 17, 40, 43, 47 | fvmptd3 5601 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = ((0g‘𝑅) · 𝑋)) |
49 | 4, 5, 41 | srglz 12961 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
50 | 48, 49 | eqtrd 2208 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)) |
51 | 9, 39, 50 | 3jca 1177 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅))) |
52 | 4, 4, 13, 13, 41, 41 | ismhm 12715 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)))) |
53 | 3, 51, 52 | sylanbrc 417 |
1
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅)) |