| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addsub12 | GIF version | ||
| Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.) |
| Ref | Expression |
|---|---|
| addsub12 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subadd23 8326 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐶) + 𝐵) = (𝐴 + (𝐵 − 𝐶))) | |
| 2 | subcl 8313 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐶) ∈ ℂ) | |
| 3 | addcom 8251 | . . . . 5 ⊢ (((𝐴 − 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐶) + 𝐵) = (𝐵 + (𝐴 − 𝐶))) | |
| 4 | 2, 3 | sylan 283 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐶) + 𝐵) = (𝐵 + (𝐴 − 𝐶))) |
| 5 | 4 | 3impa 1199 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐶) + 𝐵) = (𝐵 + (𝐴 − 𝐶))) |
| 6 | 1, 5 | eqtr3d 2244 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| 7 | 6 | 3com23 1214 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 − cmin 8285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 |
| This theorem is referenced by: addsub12d 8448 eluzgtdifelfzo 10370 |
| Copyright terms: Public domain | W3C validator |