ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl GIF version

Theorem unitmulcl 13669
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1 𝑈 = (Unit‘𝑅)
unitmulcl.2 · = (.r𝑅)
Assertion
Ref Expression
unitmulcl ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 999 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ Ring)
2 eqidd 2197 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘𝑅))
3 unitmulcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
43a1i 9 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑈 = (Unit‘𝑅))
5 ringsrg 13603 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
61, 5syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ SRing)
7 simp3 1001 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌𝑈)
82, 4, 6, 7unitcld 13664 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
9 simp2 1000 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋𝑈)
10 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) = (1r𝑅))
11 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r𝑅) = (∥r𝑅))
12 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) = (oppr𝑅))
13 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
144, 10, 11, 12, 13, 6isunitd 13662 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅))))
159, 14mpbid 147 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1615simpld 112 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r𝑅)(1r𝑅))
17 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2196 . . . . . 6 (∥r𝑅) = (∥r𝑅)
19 unitmulcl.2 . . . . . 6 · = (.r𝑅)
2017, 18, 19dvdsrmul1 13658 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
211, 8, 16, 20syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
22 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
2317, 19, 22ringlidm 13579 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) → ((1r𝑅) · 𝑌) = 𝑌)
241, 8, 23syl2anc 411 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅) · 𝑌) = 𝑌)
2521, 24breqtrd 4059 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)𝑌)
264, 10, 11, 12, 13, 6isunitd 13662 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌𝑈 ↔ (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅))))
277, 26mpbid 147 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
2827simpld 112 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r𝑅)(1r𝑅))
2917, 18dvdsrtr 13657 . . 3 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r𝑅)𝑌𝑌(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
301, 25, 28, 29syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
31 eqid 2196 . . . . 5 (oppr𝑅) = (oppr𝑅)
3231opprring 13635 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
331, 32syl 14 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) ∈ Ring)
342, 4, 6, 9unitcld 13664 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
3531, 17opprbasg 13631 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
361, 35syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3734, 36eleqtrd 2275 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘(oppr𝑅)))
3827simprd 114 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r‘(oppr𝑅))(1r𝑅))
39 eqid 2196 . . . . . 6 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
40 eqid 2196 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
41 eqid 2196 . . . . . 6 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
4239, 40, 41dvdsrmul1 13658 . . . . 5 (((oppr𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘(oppr𝑅)) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4333, 37, 38, 42syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4417, 19, 31, 41opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑋𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
45443com23 1211 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
4617, 22srgidcl 13532 . . . . . . 7 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
476, 46syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) ∈ (Base‘𝑅))
4817, 19, 31, 41opprmulg 13627 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
491, 47, 9, 48syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
5017, 19, 22ringridm 13580 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 · (1r𝑅)) = 𝑋)
511, 34, 50syl2anc 411 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
5249, 51eqtrd 2229 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = 𝑋)
5343, 45, 523brtr3d 4064 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋)
5415simprd 114 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
5539, 40dvdsrtr 13657 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
5633, 53, 54, 55syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
574, 10, 11, 12, 13, 6isunitd 13662 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r𝑅)(1r𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))))
5830, 56, 57mpbir2and 946 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  opprcoppr 13623  rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  unitmulclb  13670  unitgrp  13672  unitdvcl  13692  rdivmuldivd  13700  lringuplu  13752  subrgugrp  13796
  Copyright terms: Public domain W3C validator