ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl GIF version

Theorem unitmulcl 13745
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1 𝑈 = (Unit‘𝑅)
unitmulcl.2 · = (.r𝑅)
Assertion
Ref Expression
unitmulcl ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 999 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ Ring)
2 eqidd 2197 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘𝑅))
3 unitmulcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
43a1i 9 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑈 = (Unit‘𝑅))
5 ringsrg 13679 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
61, 5syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ SRing)
7 simp3 1001 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌𝑈)
82, 4, 6, 7unitcld 13740 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
9 simp2 1000 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋𝑈)
10 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) = (1r𝑅))
11 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r𝑅) = (∥r𝑅))
12 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) = (oppr𝑅))
13 eqidd 2197 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
144, 10, 11, 12, 13, 6isunitd 13738 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅))))
159, 14mpbid 147 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1615simpld 112 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r𝑅)(1r𝑅))
17 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2196 . . . . . 6 (∥r𝑅) = (∥r𝑅)
19 unitmulcl.2 . . . . . 6 · = (.r𝑅)
2017, 18, 19dvdsrmul1 13734 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
211, 8, 16, 20syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
22 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
2317, 19, 22ringlidm 13655 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) → ((1r𝑅) · 𝑌) = 𝑌)
241, 8, 23syl2anc 411 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅) · 𝑌) = 𝑌)
2521, 24breqtrd 4060 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)𝑌)
264, 10, 11, 12, 13, 6isunitd 13738 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌𝑈 ↔ (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅))))
277, 26mpbid 147 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
2827simpld 112 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r𝑅)(1r𝑅))
2917, 18dvdsrtr 13733 . . 3 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r𝑅)𝑌𝑌(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
301, 25, 28, 29syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
31 eqid 2196 . . . . 5 (oppr𝑅) = (oppr𝑅)
3231opprring 13711 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
331, 32syl 14 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) ∈ Ring)
342, 4, 6, 9unitcld 13740 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
3531, 17opprbasg 13707 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
361, 35syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3734, 36eleqtrd 2275 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘(oppr𝑅)))
3827simprd 114 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r‘(oppr𝑅))(1r𝑅))
39 eqid 2196 . . . . . 6 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
40 eqid 2196 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
41 eqid 2196 . . . . . 6 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
4239, 40, 41dvdsrmul1 13734 . . . . 5 (((oppr𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘(oppr𝑅)) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4333, 37, 38, 42syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4417, 19, 31, 41opprmulg 13703 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑋𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
45443com23 1211 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
4617, 22srgidcl 13608 . . . . . . 7 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
476, 46syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) ∈ (Base‘𝑅))
4817, 19, 31, 41opprmulg 13703 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
491, 47, 9, 48syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
5017, 19, 22ringridm 13656 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 · (1r𝑅)) = 𝑋)
511, 34, 50syl2anc 411 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
5249, 51eqtrd 2229 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = 𝑋)
5343, 45, 523brtr3d 4065 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋)
5415simprd 114 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
5539, 40dvdsrtr 13733 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
5633, 53, 54, 55syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
574, 10, 11, 12, 13, 6isunitd 13738 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r𝑅)(1r𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))))
5830, 56, 57mpbir2and 946 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  Basecbs 12703  .rcmulr 12781  1rcur 13591  SRingcsrg 13595  Ringcrg 13628  opprcoppr 13699  rcdsr 13718  Unitcui 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722
This theorem is referenced by:  unitmulclb  13746  unitgrp  13748  unitdvcl  13768  rdivmuldivd  13776  lringuplu  13828  subrgugrp  13872
  Copyright terms: Public domain W3C validator