ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl GIF version

Theorem unitmulcl 13612
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1 𝑈 = (Unit‘𝑅)
unitmulcl.2 · = (.r𝑅)
Assertion
Ref Expression
unitmulcl ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 999 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ Ring)
2 eqidd 2194 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘𝑅))
3 unitmulcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
43a1i 9 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑈 = (Unit‘𝑅))
5 ringsrg 13546 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
61, 5syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ SRing)
7 simp3 1001 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌𝑈)
82, 4, 6, 7unitcld 13607 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
9 simp2 1000 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋𝑈)
10 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) = (1r𝑅))
11 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r𝑅) = (∥r𝑅))
12 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) = (oppr𝑅))
13 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
144, 10, 11, 12, 13, 6isunitd 13605 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅))))
159, 14mpbid 147 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1615simpld 112 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r𝑅)(1r𝑅))
17 eqid 2193 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2193 . . . . . 6 (∥r𝑅) = (∥r𝑅)
19 unitmulcl.2 . . . . . 6 · = (.r𝑅)
2017, 18, 19dvdsrmul1 13601 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
211, 8, 16, 20syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
22 eqid 2193 . . . . . 6 (1r𝑅) = (1r𝑅)
2317, 19, 22ringlidm 13522 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) → ((1r𝑅) · 𝑌) = 𝑌)
241, 8, 23syl2anc 411 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅) · 𝑌) = 𝑌)
2521, 24breqtrd 4056 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)𝑌)
264, 10, 11, 12, 13, 6isunitd 13605 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌𝑈 ↔ (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅))))
277, 26mpbid 147 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
2827simpld 112 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r𝑅)(1r𝑅))
2917, 18dvdsrtr 13600 . . 3 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r𝑅)𝑌𝑌(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
301, 25, 28, 29syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
31 eqid 2193 . . . . 5 (oppr𝑅) = (oppr𝑅)
3231opprring 13578 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
331, 32syl 14 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) ∈ Ring)
342, 4, 6, 9unitcld 13607 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
3531, 17opprbasg 13574 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
361, 35syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (Base‘𝑅) = (Base‘(oppr𝑅)))
3734, 36eleqtrd 2272 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘(oppr𝑅)))
3827simprd 114 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r‘(oppr𝑅))(1r𝑅))
39 eqid 2193 . . . . . 6 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
40 eqid 2193 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
41 eqid 2193 . . . . . 6 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
4239, 40, 41dvdsrmul1 13601 . . . . 5 (((oppr𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘(oppr𝑅)) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4333, 37, 38, 42syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
4417, 19, 31, 41opprmulg 13570 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑋𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
45443com23 1211 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌))
4617, 22srgidcl 13475 . . . . . . 7 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
476, 46syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (1r𝑅) ∈ (Base‘𝑅))
4817, 19, 31, 41opprmulg 13570 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑋𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
491, 47, 9, 48syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅)))
5017, 19, 22ringridm 13523 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 · (1r𝑅)) = 𝑋)
511, 34, 50syl2anc 411 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
5249, 51eqtrd 2226 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = 𝑋)
5343, 45, 523brtr3d 4061 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋)
5415simprd 114 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
5539, 40dvdsrtr 13600 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
5633, 53, 54, 55syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
574, 10, 11, 12, 13, 6isunitd 13605 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r𝑅)(1r𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))))
5830, 56, 57mpbir2and 946 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  1rcur 13458  SRingcsrg 13462  Ringcrg 13495  opprcoppr 13566  rcdsr 13585  Unitcui 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589
This theorem is referenced by:  unitmulclb  13613  unitgrp  13615  unitdvcl  13635  rdivmuldivd  13643  lringuplu  13695  subrgugrp  13739
  Copyright terms: Public domain W3C validator