| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasvalstrd | GIF version | ||
| Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasvalstr.u | ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) |
| imasvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| imasvalstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| imasvalstrd.m | ⊢ (𝜑 → × ∈ 𝑋) |
| imasvalstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| imasvalstrd.c | ⊢ (𝜑 → · ∈ 𝑍) |
| imasvalstrd.i | ⊢ (𝜑 → , ∈ 𝑃) |
| imasvalstrd.t | ⊢ (𝜑 → 𝑂 ∈ 𝑄) |
| imasvalstrd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| imasvalstrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| imasvalstrd | ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvalstr.u | . 2 ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 2 | eqid 2206 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
| 3 | imasvalstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | imasvalstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | imasvalstrd.m | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | imasvalstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | imasvalstrd.c | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
| 8 | imasvalstrd.i | . . . 4 ⊢ (𝜑 → , ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 13052 | . . 3 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉) |
| 10 | imasvalstrd.t | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑄) | |
| 11 | imasvalstrd.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 12 | imasvalstrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 13 | 9nn 9212 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 14 | tsetndx 13062 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 15 | 9lt10 9641 | . . . . 5 ⊢ 9 < ;10 | |
| 16 | 10nn 9526 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 17 | plendx 13076 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 18 | 1nn0 9318 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 19 | 0nn0 9317 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 2nn 9205 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 21 | 2pos 9134 | . . . . . 6 ⊢ 0 < 2 | |
| 22 | 18, 19, 20, 21 | declt 9538 | . . . . 5 ⊢ ;10 < ;12 |
| 23 | 18, 20 | decnncl 9530 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 24 | dsndx 13091 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 25 | 13, 14, 15, 16, 17, 22, 23, 24 | strle3g 12984 | . . . 4 ⊢ ((𝑂 ∈ 𝑄 ∧ 𝐿 ∈ 𝑅 ∧ 𝐷 ∈ 𝐴) → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 26 | 10, 11, 12, 25 | syl3anc 1250 | . . 3 ⊢ (𝜑 → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 27 | 8lt9 9241 | . . . 4 ⊢ 8 < 9 | |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → 8 < 9) |
| 29 | 9, 26, 28 | strleund 12979 | . 2 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉) |
| 30 | 1, 29 | eqbrtrid 4082 | 1 ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 {ctp 3636 〈cop 3637 class class class wbr 4047 ‘cfv 5276 0cc0 7932 1c1 7933 < clt 8114 2c2 9094 8c8 9100 9c9 9101 ;cdc 9511 Struct cstr 12872 ndxcnx 12873 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 Scalarcsca 12956 ·𝑠 cvsca 12957 ·𝑖cip 12958 TopSetcts 12959 lecple 12960 distcds 12962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 |
| This theorem is referenced by: prdsvalstrd 13147 |
| Copyright terms: Public domain | W3C validator |