| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasvalstrd | GIF version | ||
| Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasvalstr.u | ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) |
| imasvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| imasvalstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| imasvalstrd.m | ⊢ (𝜑 → × ∈ 𝑋) |
| imasvalstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| imasvalstrd.c | ⊢ (𝜑 → · ∈ 𝑍) |
| imasvalstrd.i | ⊢ (𝜑 → , ∈ 𝑃) |
| imasvalstrd.t | ⊢ (𝜑 → 𝑂 ∈ 𝑄) |
| imasvalstrd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| imasvalstrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| imasvalstrd | ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvalstr.u | . 2 ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 2 | eqid 2196 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
| 3 | imasvalstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | imasvalstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | imasvalstrd.m | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | imasvalstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | imasvalstrd.c | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
| 8 | imasvalstrd.i | . . . 4 ⊢ (𝜑 → , ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 12878 | . . 3 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉) |
| 10 | imasvalstrd.t | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑄) | |
| 11 | imasvalstrd.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 12 | imasvalstrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 13 | 9nn 9176 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 14 | tsetndx 12888 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 15 | 9lt10 9604 | . . . . 5 ⊢ 9 < ;10 | |
| 16 | 10nn 9489 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 17 | plendx 12902 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 18 | 1nn0 9282 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 19 | 0nn0 9281 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 2nn 9169 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 21 | 2pos 9098 | . . . . . 6 ⊢ 0 < 2 | |
| 22 | 18, 19, 20, 21 | declt 9501 | . . . . 5 ⊢ ;10 < ;12 |
| 23 | 18, 20 | decnncl 9493 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 24 | dsndx 12917 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 25 | 13, 14, 15, 16, 17, 22, 23, 24 | strle3g 12811 | . . . 4 ⊢ ((𝑂 ∈ 𝑄 ∧ 𝐿 ∈ 𝑅 ∧ 𝐷 ∈ 𝐴) → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 26 | 10, 11, 12, 25 | syl3anc 1249 | . . 3 ⊢ (𝜑 → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 27 | 8lt9 9205 | . . . 4 ⊢ 8 < 9 | |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → 8 < 9) |
| 29 | 9, 26, 28 | strleund 12806 | . 2 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉) |
| 30 | 1, 29 | eqbrtrid 4069 | 1 ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {ctp 3625 〈cop 3626 class class class wbr 4034 ‘cfv 5259 0cc0 7896 1c1 7897 < clt 8078 2c2 9058 8c8 9064 9c9 9065 ;cdc 9474 Struct cstr 12699 ndxcnx 12700 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 Scalarcsca 12783 ·𝑠 cvsca 12784 ·𝑖cip 12785 TopSetcts 12786 lecple 12787 distcds 12789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 |
| This theorem is referenced by: prdsvalstrd 12973 |
| Copyright terms: Public domain | W3C validator |