| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasvalstrd | GIF version | ||
| Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasvalstr.u | ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) |
| imasvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| imasvalstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| imasvalstrd.m | ⊢ (𝜑 → × ∈ 𝑋) |
| imasvalstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| imasvalstrd.c | ⊢ (𝜑 → · ∈ 𝑍) |
| imasvalstrd.i | ⊢ (𝜑 → , ∈ 𝑃) |
| imasvalstrd.t | ⊢ (𝜑 → 𝑂 ∈ 𝑄) |
| imasvalstrd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| imasvalstrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| imasvalstrd | ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvalstr.u | . 2 ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 2 | eqid 2229 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
| 3 | imasvalstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | imasvalstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | imasvalstrd.m | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | imasvalstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | imasvalstrd.c | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
| 8 | imasvalstrd.i | . . . 4 ⊢ (𝜑 → , ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 13217 | . . 3 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉) |
| 10 | imasvalstrd.t | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑄) | |
| 11 | imasvalstrd.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 12 | imasvalstrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 13 | 9nn 9287 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 14 | tsetndx 13227 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 15 | 9lt10 9716 | . . . . 5 ⊢ 9 < ;10 | |
| 16 | 10nn 9601 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 17 | plendx 13241 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 18 | 1nn0 9393 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 19 | 0nn0 9392 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 2nn 9280 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 21 | 2pos 9209 | . . . . . 6 ⊢ 0 < 2 | |
| 22 | 18, 19, 20, 21 | declt 9613 | . . . . 5 ⊢ ;10 < ;12 |
| 23 | 18, 20 | decnncl 9605 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 24 | dsndx 13256 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 25 | 13, 14, 15, 16, 17, 22, 23, 24 | strle3g 13149 | . . . 4 ⊢ ((𝑂 ∈ 𝑄 ∧ 𝐿 ∈ 𝑅 ∧ 𝐷 ∈ 𝐴) → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 26 | 10, 11, 12, 25 | syl3anc 1271 | . . 3 ⊢ (𝜑 → {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉) |
| 27 | 8lt9 9316 | . . . 4 ⊢ 8 < 9 | |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → 8 < 9) |
| 29 | 9, 26, 28 | strleund 13144 | . 2 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉) |
| 30 | 1, 29 | eqbrtrid 4118 | 1 ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {ctp 3668 〈cop 3669 class class class wbr 4083 ‘cfv 5318 0cc0 8007 1c1 8008 < clt 8189 2c2 9169 8c8 9175 9c9 9176 ;cdc 9586 Struct cstr 13036 ndxcnx 13037 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Scalarcsca 13121 ·𝑠 cvsca 13122 ·𝑖cip 13123 TopSetcts 13124 lecple 13125 distcds 13127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 |
| This theorem is referenced by: prdsvalstrd 13312 |
| Copyright terms: Public domain | W3C validator |