ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpos2 GIF version

Theorem ltaddpos2 8561
Description: Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005.)
Assertion
Ref Expression
ltaddpos2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))

Proof of Theorem ltaddpos2
StepHypRef Expression
1 ltaddpos 8560 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
2 recn 8093 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 8093 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 addcom 8244 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
52, 3, 4syl2an 289 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
65breq2d 4071 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < (𝐴 + 𝐵) ↔ 𝐵 < (𝐵 + 𝐴)))
71, 6bitr4d 191 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960   + caddc 7963   < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  ltaddpos2d  8638  nn1gt1  9105  pockthi  12796
  Copyright terms: Public domain W3C validator