ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpos2 GIF version

Theorem ltaddpos2 8307
Description: Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005.)
Assertion
Ref Expression
ltaddpos2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))

Proof of Theorem ltaddpos2
StepHypRef Expression
1 ltaddpos 8306 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
2 recn 7844 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 7844 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 addcom 7991 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
52, 3, 4syl2an 287 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
65breq2d 3973 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < (𝐴 + 𝐵) ↔ 𝐵 < (𝐵 + 𝐴)))
71, 6bitr4d 190 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125   class class class wbr 3961  (class class class)co 5814  cc 7709  cr 7710  0cc0 7711   + caddc 7714   < clt 7891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-xp 4585  df-iota 5128  df-fv 5171  df-ov 5817  df-pnf 7893  df-mnf 7894  df-ltxr 7896
This theorem is referenced by:  ltaddpos2d  8384  nn1gt1  8846
  Copyright terms: Public domain W3C validator