ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  avgle1 GIF version

Theorem avgle1 8589
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avgle1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ ((𝐴 + 𝐵) / 2)))

Proof of Theorem avgle1
StepHypRef Expression
1 avglt2 8588 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ((𝐵 + 𝐴) / 2) < 𝐴))
21ancoms 264 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ((𝐵 + 𝐴) / 2) < 𝐴))
3 recn 7419 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 7419 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 7563 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
76oveq1d 5628 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) / 2) = ((𝐵 + 𝐴) / 2))
87breq1d 3830 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐴 ↔ ((𝐵 + 𝐴) / 2) < 𝐴))
92, 8bitr4d 189 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ((𝐴 + 𝐵) / 2) < 𝐴))
109notbid 625 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝐴))
11 lenlt 7505 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
12 readdcl 7412 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
13 rehalfcl 8576 . . . 4 ((𝐴 + 𝐵) ∈ ℝ → ((𝐴 + 𝐵) / 2) ∈ ℝ)
1412, 13syl 14 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
15 lenlt 7505 . . 3 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ) → (𝐴 ≤ ((𝐴 + 𝐵) / 2) ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝐴))
1614, 15syldan 276 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ ((𝐴 + 𝐵) / 2) ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝐴))
1710, 11, 163bitr4d 218 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ ((𝐴 + 𝐵) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436   class class class wbr 3820  (class class class)co 5613  cc 7292  cr 7293   + caddc 7297   < clt 7466  cle 7467   / cdiv 8078  2c2 8407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-id 4094  df-po 4097  df-iso 4098  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-2 8416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator