ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodidr GIF version

Theorem addmodidr 10406
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
addmodidr ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴)

Proof of Theorem addmodidr
StepHypRef Expression
1 nn0cn 9217 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nncn 8958 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3 addcom 8125 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐴 + 𝑀) = (𝑀 + 𝐴))
41, 2, 3syl2an 289 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ) → (𝐴 + 𝑀) = (𝑀 + 𝐴))
543adant3 1019 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 + 𝑀) = (𝑀 + 𝐴))
65oveq1d 5912 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = ((𝑀 + 𝐴) mod 𝑀))
7 addmodid 10405 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)
86, 7eqtrd 2222 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5897  cc 7840   + caddc 7845   < clt 8023  cn 8950  0cn0 9207   mod cmo 10355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-n0 9208  df-z 9285  df-q 9652  df-rp 9686  df-ico 9926  df-fl 10303  df-mod 10356
This theorem is referenced by:  modfzo0difsn  10428
  Copyright terms: Public domain W3C validator