ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnsscnp GIF version

Theorem cnsscnp 13023
Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cnsscnp (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))

Proof of Theorem cnsscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
21cncnpi 13022 . . 3 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑃𝑋) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃))
32expcom 115 . 2 (𝑃𝑋 → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
43ssrdv 3153 1 (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wss 3121   cuni 3796  cfv 5198  (class class class)co 5853   Cn ccn 12979   CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982  df-cnp 12983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator