ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4lt GIF version

Theorem flodddiv4lt 11640
Description: The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
flodddiv4lt ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))

Proof of Theorem flodddiv4lt
StepHypRef Expression
1 simpl 108 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
2 4z 9091 . . . 4 4 ∈ ℤ
3 4ne0 8825 . . . 4 4 ≠ 0
42, 3pm3.2i 270 . . 3 (4 ∈ ℤ ∧ 4 ≠ 0)
54a1i 9 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (4 ∈ ℤ ∧ 4 ≠ 0))
6 4dvdseven 11621 . . . 4 (4 ∥ 𝑁 → 2 ∥ 𝑁)
76con3i 621 . . 3 (¬ 2 ∥ 𝑁 → ¬ 4 ∥ 𝑁)
87adantl 275 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ¬ 4 ∥ 𝑁)
9 fldivndvdslt 11639 . 2 ((𝑁 ∈ ℤ ∧ (4 ∈ ℤ ∧ 4 ≠ 0) ∧ ¬ 4 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
101, 5, 8, 9syl3anc 1216 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  0cc0 7627   < clt 7807   / cdiv 8439  2c2 8778  4c4 8780  cz 9061  cfl 10048  cdvds 11500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-q 9419  df-rp 9449  df-fl 10050  df-dvds 11501
This theorem is referenced by:  flodddiv4t2lthalf  11641
  Copyright terms: Public domain W3C validator