ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2m GIF version

Theorem en2m 6924
Description: A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
en2m (𝐴 ≈ 2o → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem en2m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 en2 6923 . 2 (𝐴 ≈ 2o → ∃𝑦𝑥 𝐴 = {𝑦, 𝑥})
2 vex 2776 . . . . . . 7 𝑥 ∈ V
32prid2 3742 . . . . . 6 𝑥 ∈ {𝑦, 𝑥}
4 eleq2 2270 . . . . . 6 (𝐴 = {𝑦, 𝑥} → (𝑥𝐴𝑥 ∈ {𝑦, 𝑥}))
53, 4mpbiri 168 . . . . 5 (𝐴 = {𝑦, 𝑥} → 𝑥𝐴)
65a1i 9 . . . 4 (𝐴 ≈ 2o → (𝐴 = {𝑦, 𝑥} → 𝑥𝐴))
76eximdv 1904 . . 3 (𝐴 ≈ 2o → (∃𝑥 𝐴 = {𝑦, 𝑥} → ∃𝑥 𝑥𝐴))
87imp 124 . 2 ((𝐴 ≈ 2o ∧ ∃𝑥 𝐴 = {𝑦, 𝑥}) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1923 1 (𝐴 ≈ 2o → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  wcel 2177  {cpr 3636   class class class wbr 4048  2oc2o 6506  cen 6835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1o 6512  df-2o 6513  df-en 6838
This theorem is referenced by:  upgrm  15746  upgruhgr  15757
  Copyright terms: Public domain W3C validator