ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2m GIF version

Theorem en2m 6964
Description: A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
en2m (𝐴 ≈ 2o → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem en2m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 en2 6963 . 2 (𝐴 ≈ 2o → ∃𝑦𝑥 𝐴 = {𝑦, 𝑥})
2 vex 2802 . . . . . . 7 𝑥 ∈ V
32prid2 3773 . . . . . 6 𝑥 ∈ {𝑦, 𝑥}
4 eleq2 2293 . . . . . 6 (𝐴 = {𝑦, 𝑥} → (𝑥𝐴𝑥 ∈ {𝑦, 𝑥}))
53, 4mpbiri 168 . . . . 5 (𝐴 = {𝑦, 𝑥} → 𝑥𝐴)
65a1i 9 . . . 4 (𝐴 ≈ 2o → (𝐴 = {𝑦, 𝑥} → 𝑥𝐴))
76eximdv 1926 . . 3 (𝐴 ≈ 2o → (∃𝑥 𝐴 = {𝑦, 𝑥} → ∃𝑥 𝑥𝐴))
87imp 124 . 2 ((𝐴 ≈ 2o ∧ ∃𝑥 𝐴 = {𝑦, 𝑥}) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1945 1 (𝐴 ≈ 2o → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200  {cpr 3667   class class class wbr 4082  2oc2o 6546  cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1o 6552  df-2o 6553  df-en 6878
This theorem is referenced by:  upgrm  15885  upgruhgr  15896  uspgrushgr  15963
  Copyright terms: Public domain W3C validator