| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2m | GIF version | ||
| Description: A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| en2m | ⊢ (𝐴 ≈ 2o → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2 6963 | . 2 ⊢ (𝐴 ≈ 2o → ∃𝑦∃𝑥 𝐴 = {𝑦, 𝑥}) | |
| 2 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 2 | prid2 3773 | . . . . . 6 ⊢ 𝑥 ∈ {𝑦, 𝑥} |
| 4 | eleq2 2293 | . . . . . 6 ⊢ (𝐴 = {𝑦, 𝑥} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦, 𝑥})) | |
| 5 | 3, 4 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = {𝑦, 𝑥} → 𝑥 ∈ 𝐴) |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ≈ 2o → (𝐴 = {𝑦, 𝑥} → 𝑥 ∈ 𝐴)) |
| 7 | 6 | eximdv 1926 | . . 3 ⊢ (𝐴 ≈ 2o → (∃𝑥 𝐴 = {𝑦, 𝑥} → ∃𝑥 𝑥 ∈ 𝐴)) |
| 8 | 7 | imp 124 | . 2 ⊢ ((𝐴 ≈ 2o ∧ ∃𝑥 𝐴 = {𝑦, 𝑥}) → ∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 1, 8 | exlimddv 1945 | 1 ⊢ (𝐴 ≈ 2o → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cpr 3667 class class class wbr 4082 2oc2o 6546 ≈ cen 6875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1o 6552 df-2o 6553 df-en 6878 |
| This theorem is referenced by: upgrm 15885 upgruhgr 15896 uspgrushgr 15963 |
| Copyright terms: Public domain | W3C validator |