| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uspgrushgr | GIF version | ||
| Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| uspgrushgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2207 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuspgren 15912 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 4 | en1m 6922 | . . . . . . . 8 ⊢ (𝑥 ≈ 1o → ∃𝑦 𝑦 ∈ 𝑥) | |
| 5 | en2m 6939 | . . . . . . . 8 ⊢ (𝑥 ≈ 2o → ∃𝑦 𝑦 ∈ 𝑥) | |
| 6 | 4, 5 | jaoi 718 | . . . . . . 7 ⊢ ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) → ∃𝑦 𝑦 ∈ 𝑥) |
| 7 | 6 | a1i 9 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 (Vtx‘𝐺) → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) → ∃𝑦 𝑦 ∈ 𝑥)) |
| 8 | 7 | ss2rabi 3284 | . . . . 5 ⊢ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥} |
| 9 | f1ss 5510 | . . . . 5 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥}) | |
| 10 | 8, 9 | mpan2 425 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥}) |
| 11 | 3, 10 | biimtrdi 163 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥})) |
| 12 | 1, 2 | isushgrm 15829 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑦 𝑦 ∈ 𝑥})) |
| 13 | 11, 12 | sylibrd 169 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)) |
| 14 | 13 | pm2.43i 49 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∃wex 1516 ∈ wcel 2178 {crab 2490 ⊆ wss 3175 𝒫 cpw 3627 class class class wbr 4060 dom cdm 4694 –1-1→wf1 5288 ‘cfv 5291 1oc1o 6520 2oc2o 6521 ≈ cen 6850 Vtxcvtx 15772 iEdgciedg 15773 USHGraphcushgr 15825 USPGraphcuspgr 15908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-suc 4437 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-1o 6527 df-2o 6528 df-en 6853 df-sub 8282 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-5 9135 df-6 9136 df-7 9137 df-8 9138 df-9 9139 df-n0 9333 df-dec 9542 df-ndx 12996 df-slot 12997 df-base 12999 df-edgf 15765 df-vtx 15774 df-iedg 15775 df-ushgrm 15827 df-uspgren 15910 |
| This theorem is referenced by: uspgrupgrushgr 15937 |
| Copyright terms: Public domain | W3C validator |