Proof of Theorem sravscag
| Step | Hyp | Ref
| Expression |
| 1 | | srapart.ex |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| 2 | | scaslid 12855 |
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
| 3 | 2 | simpri 113 |
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ |
| 4 | 3 | a1i 9 |
. . . . 5
⊢ (𝜑 → (Scalar‘ndx) ∈
ℕ) |
| 5 | | basfn 12761 |
. . . . . . . 8
⊢ Base Fn
V |
| 6 | 1 | elexd 2776 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ V) |
| 7 | | funfvex 5578 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
| 8 | 7 | funfni 5361 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
| 9 | 5, 6, 8 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 10 | | srapart.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| 11 | 9, 10 | ssexd 4174 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | | ressex 12768 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑆 ∈ V) → (𝑊 ↾s 𝑆) ∈ V) |
| 13 | 1, 11, 12 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) |
| 14 | | setsex 12735 |
. . . . 5
⊢ ((𝑊 ∈ 𝑋 ∧ (Scalar‘ndx) ∈ ℕ
∧ (𝑊
↾s 𝑆)
∈ V) → (𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V) |
| 15 | 1, 4, 13, 14 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈
V) |
| 16 | | vscaslid 12865 |
. . . . . 6
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| 17 | 16 | simpri 113 |
. . . . 5
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
| 18 | 17 | a1i 9 |
. . . 4
⊢ (𝜑 → (
·𝑠 ‘ndx) ∈
ℕ) |
| 19 | | mulrslid 12834 |
. . . . . 6
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 20 | 19 | slotex 12730 |
. . . . 5
⊢ (𝑊 ∈ 𝑋 → (.r‘𝑊) ∈ V) |
| 21 | 1, 20 | syl 14 |
. . . 4
⊢ (𝜑 → (.r‘𝑊) ∈ V) |
| 22 | | setsex 12735 |
. . . 4
⊢ (((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) ∈ V ∧ (
·𝑠 ‘ndx) ∈ ℕ ∧
(.r‘𝑊)
∈ V) → ((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) |
| 23 | 15, 18, 21, 22 | syl3anc 1249 |
. . 3
⊢ (𝜑 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) |
| 24 | | slotsdifipndx 12877 |
. . . . 5
⊢ ((
·𝑠 ‘ndx) ≠
(·𝑖‘ndx) ∧ (Scalar‘ndx) ≠
(·𝑖‘ndx)) |
| 25 | 24 | simpli 111 |
. . . 4
⊢ (
·𝑠 ‘ndx) ≠
(·𝑖‘ndx) |
| 26 | | ipslid 12873 |
. . . . 5
⊢
(·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| 27 | 26 | simpri 113 |
. . . 4
⊢
(·𝑖‘ndx) ∈
ℕ |
| 28 | 16, 25, 27 | setsslnid 12755 |
. . 3
⊢ ((((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧
(.r‘𝑊)
∈ V) → ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) = (
·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
| 29 | 23, 21, 28 | syl2anc 411 |
. 2
⊢ (𝜑 → (
·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) = (
·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
| 30 | 16 | setsslid 12754 |
. . 3
⊢ (((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) ∈ V ∧
(.r‘𝑊)
∈ V) → (.r‘𝑊) = ( ·𝑠
‘((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉))) |
| 31 | 15, 21, 30 | syl2anc 411 |
. 2
⊢ (𝜑 → (.r‘𝑊) = (
·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉))) |
| 32 | | srapart.a |
. . . 4
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 33 | | sraval 14069 |
. . . . 5
⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg
‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 34 | 6, 10, 33 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 35 | 32, 34 | eqtrd 2229 |
. . 3
⊢ (𝜑 → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
| 36 | 35 | fveq2d 5565 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝐴) = ( ·𝑠
‘(((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
| 37 | 29, 31, 36 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (.r‘𝑊) = (
·𝑠 ‘𝐴)) |