Step | Hyp | Ref
| Expression |
1 | | srapart.a |
. 2
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
2 | | srapart.ex |
. . . 4
β’ (π β π β π) |
3 | | srapart.s |
. . . 4
β’ (π β π β (Baseβπ)) |
4 | | sraval 13535 |
. . . 4
β’ ((π β π β§ π β (Baseβπ)) β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
5 | 2, 3, 4 | syl2anc 411 |
. . 3
β’ (π β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
6 | | scaslid 12614 |
. . . . . . . 8
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
7 | 6 | simpri 113 |
. . . . . . 7
β’
(Scalarβndx) β β |
8 | 7 | a1i 9 |
. . . . . 6
β’ (π β (Scalarβndx) β
β) |
9 | | basfn 12523 |
. . . . . . . . 9
β’ Base Fn
V |
10 | 2 | elexd 2752 |
. . . . . . . . 9
β’ (π β π β V) |
11 | | funfvex 5534 |
. . . . . . . . . 10
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
12 | 11 | funfni 5318 |
. . . . . . . . 9
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
13 | 9, 10, 12 | sylancr 414 |
. . . . . . . 8
β’ (π β (Baseβπ) β V) |
14 | 13, 3 | ssexd 4145 |
. . . . . . 7
β’ (π β π β V) |
15 | | ressex 12528 |
. . . . . . 7
β’ ((π β π β§ π β V) β (π βΎs π) β V) |
16 | 2, 14, 15 | syl2anc 411 |
. . . . . 6
β’ (π β (π βΎs π) β V) |
17 | | setsex 12497 |
. . . . . 6
β’ ((π β π β§ (Scalarβndx) β β
β§ (π
βΎs π)
β V) β (π sSet
β¨(Scalarβndx), (π βΎs π)β©) β V) |
18 | 2, 8, 16, 17 | syl3anc 1238 |
. . . . 5
β’ (π β (π sSet β¨(Scalarβndx), (π βΎs π)β©) β
V) |
19 | | vscaslid 12624 |
. . . . . . 7
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
20 | 19 | simpri 113 |
. . . . . 6
β’ (
Β·π βndx) β β |
21 | 20 | a1i 9 |
. . . . 5
β’ (π β (
Β·π βndx) β
β) |
22 | | mulrslid 12593 |
. . . . . . 7
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
23 | 22 | slotex 12492 |
. . . . . 6
β’ (π β π β (.rβπ) β V) |
24 | 2, 23 | syl 14 |
. . . . 5
β’ (π β (.rβπ) β V) |
25 | | setsex 12497 |
. . . . 5
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§ (
Β·π βndx) β β β§
(.rβπ)
β V) β ((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
26 | 18, 21, 24, 25 | syl3anc 1238 |
. . . 4
β’ (π β ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
27 | | ipslid 12632 |
. . . . . 6
β’
(Β·π = Slot
(Β·πβndx) β§
(Β·πβndx) β
β) |
28 | 27 | simpri 113 |
. . . . 5
β’
(Β·πβndx) β
β |
29 | 28 | a1i 9 |
. . . 4
β’ (π β
(Β·πβndx) β
β) |
30 | | setsex 12497 |
. . . 4
β’ ((((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β V β§
(Β·πβndx) β β β§
(.rβπ)
β V) β (((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) β V) |
31 | 26, 29, 24, 30 | syl3anc 1238 |
. . 3
β’ (π β (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) β V) |
32 | 5, 31 | eqeltrd 2254 |
. 2
β’ (π β ((subringAlg βπ)βπ) β V) |
33 | 1, 32 | eqeltrd 2254 |
1
β’ (π β π΄ β V) |