ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraex GIF version

Theorem sraex 14418
Description: Existence of a subring algebra. (Contributed by Jim Kingdon, 16-Apr-2025.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sraex (𝜑𝐴 ∈ V)

Proof of Theorem sraex
StepHypRef Expression
1 srapart.a . 2 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.ex . . . 4 (𝜑𝑊𝑋)
3 srapart.s . . . 4 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 14409 . . . 4 ((𝑊𝑋𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
52, 3, 4syl2anc 411 . . 3 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 scaslid 13194 . . . . . . . 8 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
76simpri 113 . . . . . . 7 (Scalar‘ndx) ∈ ℕ
87a1i 9 . . . . . 6 (𝜑 → (Scalar‘ndx) ∈ ℕ)
9 basfn 13099 . . . . . . . . 9 Base Fn V
102elexd 2813 . . . . . . . . 9 (𝜑𝑊 ∈ V)
11 funfvex 5646 . . . . . . . . . 10 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1211funfni 5423 . . . . . . . . 9 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
139, 10, 12sylancr 414 . . . . . . . 8 (𝜑 → (Base‘𝑊) ∈ V)
1413, 3ssexd 4224 . . . . . . 7 (𝜑𝑆 ∈ V)
15 ressex 13106 . . . . . . 7 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
162, 14, 15syl2anc 411 . . . . . 6 (𝜑 → (𝑊s 𝑆) ∈ V)
17 setsex 13072 . . . . . 6 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
182, 8, 16, 17syl3anc 1271 . . . . 5 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
19 vscaslid 13204 . . . . . . 7 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2019simpri 113 . . . . . 6 ( ·𝑠 ‘ndx) ∈ ℕ
2120a1i 9 . . . . 5 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
22 mulrslid 13173 . . . . . . 7 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2322slotex 13067 . . . . . 6 (𝑊𝑋 → (.r𝑊) ∈ V)
242, 23syl 14 . . . . 5 (𝜑 → (.r𝑊) ∈ V)
25 setsex 13072 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
2618, 21, 24, 25syl3anc 1271 . . . 4 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
27 ipslid 13212 . . . . . 6 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
2827simpri 113 . . . . 5 (·𝑖‘ndx) ∈ ℕ
2928a1i 9 . . . 4 (𝜑 → (·𝑖‘ndx) ∈ ℕ)
30 setsex 13072 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (·𝑖‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
3126, 29, 24, 30syl3anc 1271 . . 3 (𝜑 → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
325, 31eqeltrd 2306 . 2 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) ∈ V)
331, 32eqeltrd 2306 1 (𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cop 3669   Fn wfn 5313  cfv 5318  (class class class)co 6007  cn 9118  ndxcnx 13037   sSet csts 13038  Slot cslot 13039  Basecbs 13040  s cress 13041  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  ·𝑖cip 13123  subringAlg csra 14405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-sra 14407
This theorem is referenced by:  sratopng  14419  sralmod0g  14423  rlmfn  14425  rlmvalg  14426
  Copyright terms: Public domain W3C validator