ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srascag GIF version

Theorem srascag 13938
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
srascag (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))

Proof of Theorem srascag
StepHypRef Expression
1 srapart.ex . . . . 5 (𝜑𝑊𝑋)
2 scaslid 12770 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
32simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
43a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
5 basfn 12676 . . . . . . . 8 Base Fn V
61elexd 2773 . . . . . . . 8 (𝜑𝑊 ∈ V)
7 funfvex 5571 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
87funfni 5354 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
95, 6, 8sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑊) ∈ V)
10 srapart.s . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
119, 10ssexd 4169 . . . . . 6 (𝜑𝑆 ∈ V)
12 ressex 12683 . . . . . 6 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
131, 11, 12syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝑆) ∈ V)
14 setsex 12650 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
151, 4, 13, 14syl3anc 1249 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
16 mulrslid 12749 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
1716slotex 12645 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
181, 17syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
19 vscandxnscandx 12779 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
2019necomi 2449 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
21 vscaslid 12780 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2221simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
232, 20, 22setsslnid 12670 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
2415, 18, 23syl2anc 411 . . 3 (𝜑 → (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
2522a1i 9 . . . . 5 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
26 setsex 12650 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
2715, 25, 18, 26syl3anc 1249 . . . 4 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
28 slotsdifipndx 12792 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx))
2928simpri 113 . . . . 5 (Scalar‘ndx) ≠ (·𝑖‘ndx)
30 ipslid 12788 . . . . . 6 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (·𝑖‘ndx) ∈ ℕ
322, 29, 31setsslnid 12670 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3327, 18, 32syl2anc 411 . . 3 (𝜑 → (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3424, 33eqtrd 2226 . 2 (𝜑 → (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
352setsslid 12669 . . 3 ((𝑊𝑋 ∧ (𝑊s 𝑆) ∈ V) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
361, 13, 35syl2anc 411 . 2 (𝜑 → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
37 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
38 sraval 13933 . . . . 5 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
396, 10, 38syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4037, 39eqtrd 2226 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4140fveq2d 5558 . 2 (𝜑 → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
4234, 36, 413eqtr4d 2236 1 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  wss 3153  cop 3621   Fn wfn 5249  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615   sSet csts 12616  Slot cslot 12617  Basecbs 12618  s cress 12619  .rcmulr 12696  Scalarcsca 12698   ·𝑠 cvsca 12699  ·𝑖cip 12700  subringAlg csra 13929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-sra 13931
This theorem is referenced by:  sralmod  13946  rlmscabas  13956
  Copyright terms: Public domain W3C validator