ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg GIF version

Theorem mulgneg 13270
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9251 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 110 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 simpl3 1004 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
4 mulgnncl.b . . . . . 6 𝐵 = (Base‘𝐺)
5 mulgnncl.t . . . . . 6 · = (.g𝐺)
6 mulgneg.i . . . . . 6 𝐼 = (invg𝐺)
74, 5, 6mulgnegnn 13262 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
82, 3, 7syl2anc 411 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
9 simpl1 1002 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝐺 ∈ Grp)
10 eqid 2196 . . . . . . 7 (0g𝐺) = (0g𝐺)
1110, 6grpinvid 13192 . . . . . 6 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
129, 11syl 14 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(0g𝐺)) = (0g𝐺))
13 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑁 = 0)
1413oveq1d 5937 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
15 simpl3 1004 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑋𝐵)
164, 10, 5mulg0 13255 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1715, 16syl 14 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
1814, 17eqtrd 2229 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
1918fveq2d 5562 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(0g𝐺)))
2013negeqd 8221 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = -0)
21 neg0 8272 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2245 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = 0)
2322oveq1d 5937 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0 · 𝑋))
2423, 17eqtrd 2229 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0g𝐺))
2512, 19, 243eqtr4rd 2240 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
268, 25jaodan 798 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
271, 26sylan2b 287 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
28 simpl1 1002 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
29 simprr 531 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
3029nnzd 9447 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
31 simpl3 1004 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
324, 5mulgcl 13269 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3328, 30, 31, 32syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
344, 6grpinvinv 13199 . . . 4 ((𝐺 ∈ Grp ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
3528, 33, 34syl2anc 411 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
364, 5, 6mulgnegnn 13262 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
3729, 31, 36syl2anc 411 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
38 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3938recnd 8055 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4039negnegd 8328 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4140oveq1d 5937 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4237, 41eqtr3d 2231 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4342fveq2d 5562 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (𝐼‘(𝑁 · 𝑋)))
4435, 43eqtr3d 2231 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
45 simp2 1000 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
46 elznn0nn 9340 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4745, 46sylib 122 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4827, 44, 47mpjaodan 799 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  -cneg 8198  cn 8990  0cn0 9249  cz 9326  Basecbs 12678  0gc0g 12927  Grpcgrp 13132  invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgnegneg  13271  mulgm1  13272  mulgaddcomlem  13275  mulginvcom  13277  mulgz  13280  mulgdirlem  13283  mulgdir  13284  mulgneg2  13286  mulgass  13289  mulgsubdir  13292  ghmmulg  13386  mulgass2  13614
  Copyright terms: Public domain W3C validator