ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg GIF version

Theorem mulgneg 13046
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b ๐ต = (Baseโ€˜๐บ)
mulgnncl.t ยท = (.gโ€˜๐บ)
mulgneg.i ๐ผ = (invgโ€˜๐บ)
Assertion
Ref Expression
mulgneg ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9196 . . 3 (๐‘ โˆˆ โ„•0 โ†” (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
2 simpr 110 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„•)
3 simpl3 1004 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘‹ โˆˆ ๐ต)
4 mulgnncl.b . . . . . 6 ๐ต = (Baseโ€˜๐บ)
5 mulgnncl.t . . . . . 6 ยท = (.gโ€˜๐บ)
6 mulgneg.i . . . . . 6 ๐ผ = (invgโ€˜๐บ)
74, 5, 6mulgnegnn 13038 . . . . 5 ((๐‘ โˆˆ โ„• โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
82, 3, 7syl2anc 411 . . . 4 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ โˆˆ โ„•) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
9 simpl1 1002 . . . . . 6 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ ๐บ โˆˆ Grp)
10 eqid 2189 . . . . . . 7 (0gโ€˜๐บ) = (0gโ€˜๐บ)
1110, 6grpinvid 12970 . . . . . 6 (๐บ โˆˆ Grp โ†’ (๐ผโ€˜(0gโ€˜๐บ)) = (0gโ€˜๐บ))
129, 11syl 14 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (๐ผโ€˜(0gโ€˜๐บ)) = (0gโ€˜๐บ))
13 simpr 110 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ ๐‘ = 0)
1413oveq1d 5906 . . . . . . 7 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (๐‘ ยท ๐‘‹) = (0 ยท ๐‘‹))
15 simpl3 1004 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ ๐‘‹ โˆˆ ๐ต)
164, 10, 5mulg0 13033 . . . . . . . 8 (๐‘‹ โˆˆ ๐ต โ†’ (0 ยท ๐‘‹) = (0gโ€˜๐บ))
1715, 16syl 14 . . . . . . 7 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (0 ยท ๐‘‹) = (0gโ€˜๐บ))
1814, 17eqtrd 2222 . . . . . 6 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (๐‘ ยท ๐‘‹) = (0gโ€˜๐บ))
1918fveq2d 5534 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (๐ผโ€˜(๐‘ ยท ๐‘‹)) = (๐ผโ€˜(0gโ€˜๐บ)))
2013negeqd 8170 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ -๐‘ = -0)
21 neg0 8221 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2238 . . . . . . 7 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ -๐‘ = 0)
2322oveq1d 5906 . . . . . 6 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (-๐‘ ยท ๐‘‹) = (0 ยท ๐‘‹))
2423, 17eqtrd 2222 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (-๐‘ ยท ๐‘‹) = (0gโ€˜๐บ))
2512, 19, 243eqtr4rd 2233 . . . 4 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ = 0) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
268, 25jaodan 798 . . 3 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0)) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
271, 26sylan2b 287 . 2 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ โˆˆ โ„•0) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
28 simpl1 1002 . . . 4 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐บ โˆˆ Grp)
29 simprr 531 . . . . . 6 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•)
3029nnzd 9392 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„ค)
31 simpl3 1004 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘‹ โˆˆ ๐ต)
324, 5mulgcl 13045 . . . . 5 ((๐บ โˆˆ Grp โˆง -๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘ ยท ๐‘‹) โˆˆ ๐ต)
3328, 30, 31, 32syl3anc 1249 . . . 4 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (-๐‘ ยท ๐‘‹) โˆˆ ๐ต)
344, 6grpinvinv 12977 . . . 4 ((๐บ โˆˆ Grp โˆง (-๐‘ ยท ๐‘‹) โˆˆ ๐ต) โ†’ (๐ผโ€˜(๐ผโ€˜(-๐‘ ยท ๐‘‹))) = (-๐‘ ยท ๐‘‹))
3528, 33, 34syl2anc 411 . . 3 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ผโ€˜(๐ผโ€˜(-๐‘ ยท ๐‘‹))) = (-๐‘ ยท ๐‘‹))
364, 5, 6mulgnegnn 13038 . . . . . 6 ((-๐‘ โˆˆ โ„• โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (--๐‘ ยท ๐‘‹) = (๐ผโ€˜(-๐‘ ยท ๐‘‹)))
3729, 31, 36syl2anc 411 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (--๐‘ ยท ๐‘‹) = (๐ผโ€˜(-๐‘ ยท ๐‘‹)))
38 simprl 529 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„)
3938recnd 8004 . . . . . . 7 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„‚)
4039negnegd 8277 . . . . . 6 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ --๐‘ = ๐‘)
4140oveq1d 5906 . . . . 5 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (--๐‘ ยท ๐‘‹) = (๐‘ ยท ๐‘‹))
4237, 41eqtr3d 2224 . . . 4 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ผโ€˜(-๐‘ ยท ๐‘‹)) = (๐‘ ยท ๐‘‹))
4342fveq2d 5534 . . 3 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ผโ€˜(๐ผโ€˜(-๐‘ ยท ๐‘‹))) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
4435, 43eqtr3d 2224 . 2 (((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
45 simp2 1000 . . 3 ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ๐‘ โˆˆ โ„ค)
46 elznn0nn 9285 . . 3 (๐‘ โˆˆ โ„ค โ†” (๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)))
4745, 46sylib 122 . 2 ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)))
4827, 44, 47mpjaodan 799 1 ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘ ยท ๐‘‹) = (๐ผโ€˜(๐‘ ยท ๐‘‹)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 709   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160  โ€˜cfv 5231  (class class class)co 5891  โ„cr 7828  0cc0 7829  -cneg 8147  โ„•cn 8937  โ„•0cn0 9194  โ„คcz 9271  Basecbs 12480  0gc0g 12727  Grpcgrp 12911  invgcminusg 12912  .gcmg 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-2 8996  df-n0 9195  df-z 9272  df-uz 9547  df-seqfrec 10464  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-mulg 13028
This theorem is referenced by:  mulgnegneg  13047  mulgm1  13048  mulgaddcomlem  13051  mulginvcom  13053  mulgz  13056  mulgdirlem  13059  mulgdir  13060  mulgneg2  13062  mulgass  13065  mulgsubdir  13068  ghmmulg  13156  mulgass2  13371
  Copyright terms: Public domain W3C validator