ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg GIF version

Theorem mulgneg 13210
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9242 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 110 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 simpl3 1004 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
4 mulgnncl.b . . . . . 6 𝐵 = (Base‘𝐺)
5 mulgnncl.t . . . . . 6 · = (.g𝐺)
6 mulgneg.i . . . . . 6 𝐼 = (invg𝐺)
74, 5, 6mulgnegnn 13202 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
82, 3, 7syl2anc 411 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
9 simpl1 1002 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝐺 ∈ Grp)
10 eqid 2193 . . . . . . 7 (0g𝐺) = (0g𝐺)
1110, 6grpinvid 13132 . . . . . 6 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
129, 11syl 14 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(0g𝐺)) = (0g𝐺))
13 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑁 = 0)
1413oveq1d 5933 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
15 simpl3 1004 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑋𝐵)
164, 10, 5mulg0 13195 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1715, 16syl 14 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
1814, 17eqtrd 2226 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
1918fveq2d 5558 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(0g𝐺)))
2013negeqd 8214 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = -0)
21 neg0 8265 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2242 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = 0)
2322oveq1d 5933 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0 · 𝑋))
2423, 17eqtrd 2226 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0g𝐺))
2512, 19, 243eqtr4rd 2237 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
268, 25jaodan 798 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
271, 26sylan2b 287 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
28 simpl1 1002 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
29 simprr 531 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
3029nnzd 9438 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
31 simpl3 1004 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
324, 5mulgcl 13209 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3328, 30, 31, 32syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
344, 6grpinvinv 13139 . . . 4 ((𝐺 ∈ Grp ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
3528, 33, 34syl2anc 411 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
364, 5, 6mulgnegnn 13202 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
3729, 31, 36syl2anc 411 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
38 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3938recnd 8048 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4039negnegd 8321 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4140oveq1d 5933 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4237, 41eqtr3d 2228 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4342fveq2d 5558 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (𝐼‘(𝑁 · 𝑋)))
4435, 43eqtr3d 2228 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
45 simp2 1000 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
46 elznn0nn 9331 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4745, 46sylib 122 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4827, 44, 47mpjaodan 799 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  cr 7871  0cc0 7872  -cneg 8191  cn 8982  0cn0 9240  cz 9317  Basecbs 12618  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgnegneg  13211  mulgm1  13212  mulgaddcomlem  13215  mulginvcom  13217  mulgz  13220  mulgdirlem  13223  mulgdir  13224  mulgneg2  13226  mulgass  13229  mulgsubdir  13232  ghmmulg  13326  mulgass2  13554
  Copyright terms: Public domain W3C validator