ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg GIF version

Theorem mulgneg 12857
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9146 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 110 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 simpl3 1000 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
4 mulgnncl.b . . . . . 6 𝐵 = (Base‘𝐺)
5 mulgnncl.t . . . . . 6 · = (.g𝐺)
6 mulgneg.i . . . . . 6 𝐼 = (invg𝐺)
74, 5, 6mulgnegnn 12849 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
82, 3, 7syl2anc 411 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
9 simpl1 998 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝐺 ∈ Grp)
10 eqid 2173 . . . . . . 7 (0g𝐺) = (0g𝐺)
1110, 6grpinvid 12787 . . . . . 6 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
129, 11syl 14 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(0g𝐺)) = (0g𝐺))
13 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑁 = 0)
1413oveq1d 5877 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
15 simpl3 1000 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → 𝑋𝐵)
164, 10, 5mulg0 12844 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1715, 16syl 14 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
1814, 17eqtrd 2206 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
1918fveq2d 5508 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(0g𝐺)))
2013negeqd 8123 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = -0)
21 neg0 8174 . . . . . . . 8 -0 = 0
2220, 21eqtrdi 2222 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → -𝑁 = 0)
2322oveq1d 5877 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0 · 𝑋))
2423, 17eqtrd 2206 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (0g𝐺))
2512, 19, 243eqtr4rd 2217 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 = 0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
268, 25jaodan 795 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
271, 26sylan2b 287 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
28 simpl1 998 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
29 simprr 530 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
3029nnzd 9342 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
31 simpl3 1000 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
324, 5mulgcl 12856 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3328, 30, 31, 32syl3anc 1236 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
344, 6grpinvinv 12793 . . . 4 ((𝐺 ∈ Grp ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
3528, 33, 34syl2anc 411 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (-𝑁 · 𝑋))
364, 5, 6mulgnegnn 12849 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
3729, 31, 36syl2anc 411 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
38 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3938recnd 7957 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4039negnegd 8230 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4140oveq1d 5877 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4237, 41eqtr3d 2208 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4342fveq2d 5508 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐼‘(𝐼‘(-𝑁 · 𝑋))) = (𝐼‘(𝑁 · 𝑋)))
4435, 43eqtr3d 2208 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
45 simp2 996 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
46 elznn0nn 9235 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4745, 46sylib 122 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4827, 44, 47mpjaodan 796 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 706  w3a 976   = wceq 1351  wcel 2144  cfv 5205  (class class class)co 5862  cr 7782  0cc0 7783  -cneg 8100  cn 8887  0cn0 9144  cz 9221  Basecbs 12425  0gc0g 12623  Grpcgrp 12735  invgcminusg 12736  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulgnegneg  12858  mulgm1  12859  mulgaddcomlem  12861  mulginvcom  12863  mulgz  12866  mulgdirlem  12869  mulgdir  12870  mulgneg2  12872  mulgass  12875  mulgsubdir  12878
  Copyright terms: Public domain W3C validator