ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvnegid GIF version

Theorem lmodvnegid 13662
Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvnegid.v 𝑉 = (Base‘𝑊)
lmodvnegid.p + = (+g𝑊)
lmodvnegid.z 0 = (0g𝑊)
lmodvnegid.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lmodvnegid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem lmodvnegid
StepHypRef Expression
1 lmodgrp 13627 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvnegid.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvnegid.p . . 3 + = (+g𝑊)
4 lmodvnegid.z . . 3 0 = (0g𝑊)
5 lmodvnegid.n . . 3 𝑁 = (invg𝑊)
62, 3, 4, 5grprinv 13010 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
71, 6sylan 283 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  0gc0g 12764  Grpcgrp 12960  invgcminusg 12961  LModclmod 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-lmod 13622
This theorem is referenced by:  lmodvneg1  13663
  Copyright terms: Public domain W3C validator