![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsnel3 | GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspsnel3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
Ref | Expression |
---|---|
lspsnel3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspsnel3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspsnel3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | lspsnss 13745 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
7 | 1, 2, 3, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
8 | lspsnel3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
9 | 7, 8 | sseldd 3171 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 {csn 3610 ‘cfv 5238 LModclmod 13628 LSubSpclss 13693 LSpanclspn 13727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-cnex 7937 ax-resscn 7938 ax-1re 7940 ax-addrcl 7943 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-ndx 12526 df-slot 12527 df-base 12529 df-plusg 12613 df-mulr 12614 df-sca 12616 df-vsca 12617 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-lmod 13630 df-lssm 13694 df-lsp 13728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |