| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsnss | GIF version | ||
| Description: The span of the singleton of a subspace member is included in the subspace. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsnss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3767 | . 2 ⊢ (𝑋 ∈ 𝑈 → {𝑋} ⊆ 𝑈) | |
| 2 | lspsnss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspsnss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 2, 3 | lspssp 14035 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋} ⊆ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 5 | 1, 4 | syl3an3 1284 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 {csn 3623 ‘cfv 5259 LModclmod 13919 LSubSpclss 13984 LSpanclspn 14018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-lmod 13921 df-lssm 13985 df-lsp 14019 |
| This theorem is referenced by: lspsnel3 14037 lspsnel6 14040 |
| Copyright terms: Public domain | W3C validator |