Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnbl0 GIF version

Theorem cnbl0 12778
 Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnbl0 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))

Proof of Theorem cnbl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 965 . . . . . 6 (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))
2 abscl 10884 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
3 absge0 10893 . . . . . . . . 9 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
42, 3jca 304 . . . . . . . 8 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
54adantl 275 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
65biantrurd 303 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)))
71, 6bitr4id 198 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅))
8 0re 7819 . . . . . 6 0 ∈ ℝ
9 simpl 108 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
10 elico2 9779 . . . . . 6 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
118, 9, 10sylancr 411 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
12 0cn 7811 . . . . . . . . 9 0 ∈ ℂ
13 cnblcld.1 . . . . . . . . . . 11 𝐷 = (abs ∘ − )
1413cnmetdval 12773 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
15 abssub 10934 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
1614, 15eqtrd 2174 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
1712, 16mpan 421 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
18 subid1 8035 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
1918fveq2d 5437 . . . . . . . 8 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2017, 19eqtrd 2174 . . . . . . 7 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2120adantl 275 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2221breq1d 3949 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅))
237, 11, 223bitr4d 219 . . . 4 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅))
2423pm5.32da 448 . . 3 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
25 absf 10943 . . . . 5 abs:ℂ⟶ℝ
26 ffn 5284 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
2725, 26ax-mp 5 . . . 4 abs Fn ℂ
28 elpreima 5551 . . . 4 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
2927, 28mp1i 10 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
30 cnxmet 12775 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
3113, 30eqeltri 2214 . . . 4 𝐷 ∈ (∞Met‘ℂ)
32 elbl 12635 . . . 4 ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3331, 12, 32mp3an12 1306 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3424, 29, 333bitr4d 219 . 2 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅)))
3534eqrdv 2139 1 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 2112   class class class wbr 3939  ◡ccnv 4550   “ cima 4554   ∘ ccom 4555   Fn wfn 5130  ⟶wf 5131  ‘cfv 5135  (class class class)co 5786  ℂcc 7671  ℝcr 7672  0cc0 7673  ℝ*cxr 7852   < clt 7853   ≤ cle 7854   − cmin 7986  [,)cico 9732  abscabs 10830  ∞Metcxmet 12224  ballcbl 12226 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791  ax-arch 7792  ax-caucvg 7793 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-if 3482  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-tr 4037  df-id 4226  df-po 4229  df-iso 4230  df-iord 4299  df-on 4301  df-ilim 4302  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-1st 6050  df-2nd 6051  df-recs 6214  df-frec 6300  df-map 6556  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486  df-inn 8774  df-2 8832  df-3 8833  df-4 8834  df-n0 9031  df-z 9108  df-uz 9380  df-rp 9500  df-xadd 9619  df-ico 9736  df-seqfrec 10279  df-exp 10353  df-cj 10675  df-re 10676  df-im 10677  df-rsqrt 10831  df-abs 10832  df-psmet 12231  df-xmet 12232  df-met 12233  df-bl 12234 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator