ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltapi GIF version

Theorem ltapi 8641
Description: 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
Hypotheses
Ref Expression
ltapii.a 𝐴 ∈ ℝ
ltapii.b 𝐵 ∈ ℝ
Assertion
Ref Expression
ltapi (𝐴 < 𝐵𝐵 # 𝐴)

Proof of Theorem ltapi
StepHypRef Expression
1 ltapii.a . 2 𝐴 ∈ ℝ
2 ltapii.b . 2 𝐵 ∈ ℝ
3 ltap 8638 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
41, 2, 3mp3an12 1338 1 (𝐴 < 𝐵𝐵 # 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160   class class class wbr 4025  cr 7857   < clt 8040   # cap 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-br 4026  df-opab 4087  df-id 4318  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-iota 5203  df-fun 5244  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-pnf 8042  df-mnf 8043  df-ltxr 8045  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator