| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfld1 | GIF version | ||
| Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld1 | ⊢ 1 = (1r‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8020 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | mullid 8072 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 3 | mulrid 8071 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
| 4 | 2, 3 | jca 306 | . . . . 5 ⊢ (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
| 5 | 4 | rgen 2559 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥) |
| 6 | 1, 5 | pm3.2i 272 | . . 3 ⊢ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
| 7 | cnring 14365 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 8 | cnfldbas 14355 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 9 | cnfldmul 14359 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 10 | eqid 2205 | . . . . 5 ⊢ (1r‘ℂfld) = (1r‘ℂfld) | |
| 11 | 8, 9, 10 | isringid 13820 | . . . 4 ⊢ (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1)) |
| 12 | 7, 11 | ax-mp 5 | . . 3 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1) |
| 13 | 6, 12 | mpbi 145 | . 2 ⊢ (1r‘ℂfld) = 1 |
| 14 | 13 | eqcomi 2209 | 1 ⊢ 1 = (1r‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ‘cfv 5272 (class class class)co 5946 ℂcc 7925 1c1 7928 · cmul 7932 1rcur 13754 Ringcrg 13791 ℂfldccnfld 14351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-z 9375 df-dec 9507 df-uz 9651 df-rp 9778 df-fz 10133 df-cj 11186 df-abs 11343 df-struct 12867 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-plusg 12955 df-mulr 12956 df-starv 12957 df-tset 12961 df-ple 12962 df-ds 12964 df-unif 12965 df-0g 13123 df-topgen 13125 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-cmn 13655 df-mgp 13716 df-ur 13755 df-ring 13793 df-cring 13794 df-bl 14341 df-mopn 14342 df-fg 14344 df-metu 14345 df-cnfld 14352 |
| This theorem is referenced by: cnfldexp 14372 cnsubrglem 14375 zsssubrg 14380 cnfldui 14384 zring1 14396 |
| Copyright terms: Public domain | W3C validator |