![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfld1 | GIF version |
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld1 | ⊢ 1 = (1r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7918 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | mullid 7969 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
3 | mulrid 7968 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
4 | 2, 3 | jca 306 | . . . . 5 ⊢ (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
5 | 4 | rgen 2540 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥) |
6 | 1, 5 | pm3.2i 272 | . . 3 ⊢ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
7 | cnring 13746 | . . . 4 ⊢ ℂfld ∈ Ring | |
8 | cnfldbas 13741 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfldmul 13743 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
10 | eqid 2187 | . . . . 5 ⊢ (1r‘ℂfld) = (1r‘ℂfld) | |
11 | 8, 9, 10 | isringid 13277 | . . . 4 ⊢ (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1)) |
12 | 7, 11 | ax-mp 5 | . . 3 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1) |
13 | 6, 12 | mpbi 145 | . 2 ⊢ (1r‘ℂfld) = 1 |
14 | 13 | eqcomi 2191 | 1 ⊢ 1 = (1r‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 1c1 7826 · cmul 7830 1rcur 13211 Ringcrg 13248 ℂfldccnfld 13737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-addf 7947 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-tp 3612 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-z 9268 df-dec 9399 df-uz 9543 df-fz 10023 df-cj 10865 df-struct 12478 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-starv 12566 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-cmn 13123 df-mgp 13173 df-ur 13212 df-ring 13250 df-cring 13251 df-icnfld 13738 |
This theorem is referenced by: cnfldexp 13753 cnsubrglem 13756 zsssubrg 13761 zring1 13773 |
Copyright terms: Public domain | W3C validator |