| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfld1 | GIF version | ||
| Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld1 | ⊢ 1 = (1r‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | mullid 8041 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 3 | mulrid 8040 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
| 4 | 2, 3 | jca 306 | . . . . 5 ⊢ (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
| 5 | 4 | rgen 2550 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥) |
| 6 | 1, 5 | pm3.2i 272 | . . 3 ⊢ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
| 7 | cnring 14202 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 8 | cnfldbas 14192 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 9 | cnfldmul 14196 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 10 | eqid 2196 | . . . . 5 ⊢ (1r‘ℂfld) = (1r‘ℂfld) | |
| 11 | 8, 9, 10 | isringid 13657 | . . . 4 ⊢ (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1)) |
| 12 | 7, 11 | ax-mp 5 | . . 3 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1) |
| 13 | 6, 12 | mpbi 145 | . 2 ⊢ (1r‘ℂfld) = 1 |
| 14 | 13 | eqcomi 2200 | 1 ⊢ 1 = (1r‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 1c1 7897 · cmul 7901 1rcur 13591 Ringcrg 13628 ℂfldccnfld 14188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-rp 9746 df-fz 10101 df-cj 11024 df-abs 11181 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-starv 12795 df-tset 12799 df-ple 12800 df-ds 12802 df-unif 12803 df-0g 12960 df-topgen 12962 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-cmn 13492 df-mgp 13553 df-ur 13592 df-ring 13630 df-cring 13631 df-bl 14178 df-mopn 14179 df-fg 14181 df-metu 14182 df-cnfld 14189 |
| This theorem is referenced by: cnfldexp 14209 cnsubrglem 14212 zsssubrg 14217 cnfldui 14221 zring1 14233 |
| Copyright terms: Public domain | W3C validator |