![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0opthlem1d | GIF version |
Description: A rather pretty lemma for nn0opth2 10798. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthlem1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
nn0opthlem1d.2 | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0opthlem1d | ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthlem1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1nn0 9259 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ0) |
4 | 1, 3 | nn0addcld 9300 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ0) |
5 | nn0opthlem1d.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
6 | 4, 5 | nn0le2msqd 10793 | . 2 ⊢ (𝜑 → ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
7 | nn0ltp1le 9382 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
8 | 1, 5, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
9 | 1, 1 | nn0mulcld 9301 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐴) ∈ ℕ0) |
10 | 2nn0 9260 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
11 | 10 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ0) |
12 | 11, 1 | nn0mulcld 9301 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℕ0) |
13 | 9, 12 | nn0addcld 9300 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0) |
14 | 5, 5 | nn0mulcld 9301 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐶) ∈ ℕ0) |
15 | nn0ltp1le 9382 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
16 | 13, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
17 | 1 | nn0cnd 9298 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 1cnd 8037 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
19 | binom2 10725 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
21 | 17, 18 | addcld 8041 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
22 | 21 | sqvald 10744 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
23 | 17 | sqvald 10744 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
24 | 23 | oveq1d 5934 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))) |
25 | 18 | sqvald 10744 | . . . . . . 7 ⊢ (𝜑 → (1↑2) = (1 · 1)) |
26 | 24, 25 | oveq12d 5937 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
27 | 20, 22, 26 | 3eqtr3d 2234 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
28 | 17 | mulridd 8038 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
29 | 28 | oveq2d 5935 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
30 | 29 | oveq2d 5935 | . . . . . 6 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))) |
31 | 18 | mulridd 8038 | . . . . . 6 ⊢ (𝜑 → (1 · 1) = 1) |
32 | 30, 31 | oveq12d 5937 | . . . . 5 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
33 | 27, 32 | eqtrd 2226 | . . . 4 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
34 | 33 | breq1d 4040 | . . 3 ⊢ (𝜑 → (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
35 | 16, 34 | bitr4d 191 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
36 | 6, 8, 35 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 1c1 7875 + caddc 7877 · cmul 7879 < clt 8056 ≤ cle 8057 2c2 9035 ℕ0cn0 9243 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: nn0opthlem2d 10795 |
Copyright terms: Public domain | W3C validator |