Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0opthlem1d | GIF version |
Description: A rather pretty lemma for nn0opth2 10672. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthlem1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
nn0opthlem1d.2 | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0opthlem1d | ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthlem1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1nn0 9165 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ0) |
4 | 1, 3 | nn0addcld 9206 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ0) |
5 | nn0opthlem1d.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
6 | 4, 5 | nn0le2msqd 10667 | . 2 ⊢ (𝜑 → ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
7 | nn0ltp1le 9288 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
8 | 1, 5, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
9 | 1, 1 | nn0mulcld 9207 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐴) ∈ ℕ0) |
10 | 2nn0 9166 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
11 | 10 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ0) |
12 | 11, 1 | nn0mulcld 9207 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℕ0) |
13 | 9, 12 | nn0addcld 9206 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0) |
14 | 5, 5 | nn0mulcld 9207 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐶) ∈ ℕ0) |
15 | nn0ltp1le 9288 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
16 | 13, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
17 | 1 | nn0cnd 9204 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 1cnd 7948 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
19 | binom2 10601 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
21 | 17, 18 | addcld 7951 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
22 | 21 | sqvald 10620 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
23 | 17 | sqvald 10620 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
24 | 23 | oveq1d 5880 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))) |
25 | 18 | sqvald 10620 | . . . . . . 7 ⊢ (𝜑 → (1↑2) = (1 · 1)) |
26 | 24, 25 | oveq12d 5883 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
27 | 20, 22, 26 | 3eqtr3d 2216 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
28 | 17 | mulid1d 7949 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
29 | 28 | oveq2d 5881 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
30 | 29 | oveq2d 5881 | . . . . . 6 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))) |
31 | 18 | mulid1d 7949 | . . . . . 6 ⊢ (𝜑 → (1 · 1) = 1) |
32 | 30, 31 | oveq12d 5883 | . . . . 5 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
33 | 27, 32 | eqtrd 2208 | . . . 4 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
34 | 33 | breq1d 4008 | . . 3 ⊢ (𝜑 → (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
35 | 16, 34 | bitr4d 191 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
36 | 6, 8, 35 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 1c1 7787 + caddc 7789 · cmul 7791 < clt 7966 ≤ cle 7967 2c2 8943 ℕ0cn0 9149 ↑cexp 10489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-n0 9150 df-z 9227 df-uz 9502 df-seqfrec 10416 df-exp 10490 |
This theorem is referenced by: nn0opthlem2d 10669 |
Copyright terms: Public domain | W3C validator |