| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0opthlem1d | GIF version | ||
| Description: A rather pretty lemma for nn0opth2 10941. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| Ref | Expression |
|---|---|
| nn0opthlem1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| nn0opthlem1d.2 | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0opthlem1d | ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthlem1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1nn0 9381 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 4 | 1, 3 | nn0addcld 9422 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ0) |
| 5 | nn0opthlem1d.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
| 6 | 4, 5 | nn0le2msqd 10936 | . 2 ⊢ (𝜑 → ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
| 7 | nn0ltp1le 9505 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 8 | 1, 5, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
| 9 | 1, 1 | nn0mulcld 9423 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐴) ∈ ℕ0) |
| 10 | 2nn0 9382 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 11 | 10 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 12 | 11, 1 | nn0mulcld 9423 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℕ0) |
| 13 | 9, 12 | nn0addcld 9422 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0) |
| 14 | 5, 5 | nn0mulcld 9423 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐶) ∈ ℕ0) |
| 15 | nn0ltp1le 9505 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
| 16 | 13, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
| 17 | 1 | nn0cnd 9420 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 18 | 1cnd 8158 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 19 | binom2 10868 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
| 20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
| 21 | 17, 18 | addcld 8162 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
| 22 | 21 | sqvald 10887 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
| 23 | 17 | sqvald 10887 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
| 24 | 23 | oveq1d 6015 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))) |
| 25 | 18 | sqvald 10887 | . . . . . . 7 ⊢ (𝜑 → (1↑2) = (1 · 1)) |
| 26 | 24, 25 | oveq12d 6018 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
| 27 | 20, 22, 26 | 3eqtr3d 2270 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
| 28 | 17 | mulridd 8159 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| 29 | 28 | oveq2d 6016 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
| 30 | 29 | oveq2d 6016 | . . . . . 6 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))) |
| 31 | 18 | mulridd 8159 | . . . . . 6 ⊢ (𝜑 → (1 · 1) = 1) |
| 32 | 30, 31 | oveq12d 6018 | . . . . 5 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
| 33 | 27, 32 | eqtrd 2262 | . . . 4 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
| 34 | 33 | breq1d 4092 | . . 3 ⊢ (𝜑 → (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
| 35 | 16, 34 | bitr4d 191 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
| 36 | 6, 8, 35 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 1c1 7996 + caddc 7998 · cmul 8000 < clt 8177 ≤ cle 8178 2c2 9157 ℕ0cn0 9365 ↑cexp 10755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-exp 10756 |
| This theorem is referenced by: nn0opthlem2d 10938 |
| Copyright terms: Public domain | W3C validator |