| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0opthlem1d | GIF version | ||
| Description: A rather pretty lemma for nn0opth2 10867. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| Ref | Expression |
|---|---|
| nn0opthlem1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| nn0opthlem1d.2 | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0opthlem1d | ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthlem1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1nn0 9310 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 4 | 1, 3 | nn0addcld 9351 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ0) |
| 5 | nn0opthlem1d.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
| 6 | 4, 5 | nn0le2msqd 10862 | . 2 ⊢ (𝜑 → ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
| 7 | nn0ltp1le 9434 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 8 | 1, 5, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
| 9 | 1, 1 | nn0mulcld 9352 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐴) ∈ ℕ0) |
| 10 | 2nn0 9311 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 11 | 10 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 12 | 11, 1 | nn0mulcld 9352 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℕ0) |
| 13 | 9, 12 | nn0addcld 9351 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0) |
| 14 | 5, 5 | nn0mulcld 9352 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐶) ∈ ℕ0) |
| 15 | nn0ltp1le 9434 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
| 16 | 13, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
| 17 | 1 | nn0cnd 9349 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 18 | 1cnd 8087 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 19 | binom2 10794 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
| 20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
| 21 | 17, 18 | addcld 8091 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
| 22 | 21 | sqvald 10813 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
| 23 | 17 | sqvald 10813 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
| 24 | 23 | oveq1d 5958 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))) |
| 25 | 18 | sqvald 10813 | . . . . . . 7 ⊢ (𝜑 → (1↑2) = (1 · 1)) |
| 26 | 24, 25 | oveq12d 5961 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
| 27 | 20, 22, 26 | 3eqtr3d 2245 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
| 28 | 17 | mulridd 8088 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| 29 | 28 | oveq2d 5959 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
| 30 | 29 | oveq2d 5959 | . . . . . 6 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))) |
| 31 | 18 | mulridd 8088 | . . . . . 6 ⊢ (𝜑 → (1 · 1) = 1) |
| 32 | 30, 31 | oveq12d 5961 | . . . . 5 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
| 33 | 27, 32 | eqtrd 2237 | . . . 4 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
| 34 | 33 | breq1d 4053 | . . 3 ⊢ (𝜑 → (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
| 35 | 16, 34 | bitr4d 191 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
| 36 | 6, 8, 35 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 1c1 7925 + caddc 7927 · cmul 7929 < clt 8106 ≤ cle 8107 2c2 9086 ℕ0cn0 9294 ↑cexp 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 df-exp 10682 |
| This theorem is referenced by: nn0opthlem2d 10864 |
| Copyright terms: Public domain | W3C validator |