Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge0d | GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0ge0d | ⊢ (𝜑 → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | nn0ge0 9139 | . 2 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 0cc0 7753 ≤ cle 7934 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 df-n0 9115 |
This theorem is referenced by: flqmulnn0 10234 zmodfz 10281 addmodid 10307 modifeq2int 10321 modaddmodlo 10323 modsumfzodifsn 10331 addmodlteq 10333 expnnval 10458 nn0le2msqd 10632 facwordi 10653 faclbnd 10654 faclbnd6 10657 facavg 10659 geolim2 11453 mertenslemi1 11476 eftabs 11597 efcllemp 11599 efaddlem 11615 eftlub 11631 oexpneg 11814 divalglemnn 11855 divalglemnqt 11857 divalglemeunn 11858 divalg2 11863 dfgcd2 11947 gcdmultiple 11953 gcdmultiplez 11954 dvdssqlem 11963 nn0seqcvgd 11973 mulgcddvds 12026 isprm5lem 12073 nn0sqrtelqelz 12138 nonsq 12139 phibndlem 12148 dfphi2 12152 modprm0 12186 pythagtriplem3 12199 pythagtriplem10 12201 pythagtriplem6 12202 pythagtriplem7 12203 pythagtriplem12 12207 pythagtriplem14 12209 pcge0 12244 pcprmpw2 12264 pcmptdvds 12275 fldivp1 12278 pcbc 12281 qexpz 12282 pockthlem 12286 pockthg 12287 mul4sqlem 12323 ennnfoneleminc 12344 logbgcd1irraplemexp 13526 lgsval2lem 13551 lgsval4a 13563 2sqlem3 13593 2sqlem7 13597 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |