ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprg GIF version

Theorem addcanprg 7771
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
Assertion
Ref Expression
addcanprg ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanprg
StepHypRef Expression
1 addcanprleml 7769 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
2 3ancomb 991 . . . . . . 7 ((𝐴P𝐵P𝐶P) ↔ (𝐴P𝐶P𝐵P))
3 eqcom 2211 . . . . . . 7 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))
42, 3anbi12i 460 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)))
5 addcanprleml 7769 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st𝐶) ⊆ (1st𝐵))
64, 5sylbi 121 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐶) ⊆ (1st𝐵))
71, 6eqssd 3221 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) = (1st𝐶))
8 addcanprlemu 7770 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
9 addcanprlemu 7770 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd𝐶) ⊆ (2nd𝐵))
104, 9sylbi 121 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐶) ⊆ (2nd𝐵))
118, 10eqssd 3221 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) = (2nd𝐶))
127, 11jca 306 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶)))
13 preqlu 7627 . . . . 5 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
14133adant1 1020 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1514adantr 276 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1612, 15mpbird 167 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶)
1716ex 115 1 ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wss 3177  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  Pcnp 7446   +P cpp 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623
This theorem is referenced by:  lteupri  7772  ltaprg  7774  enrer  7890  mulcmpblnr  7896  mulgt0sr  7933  srpospr  7938
  Copyright terms: Public domain W3C validator