![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcanprg | GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.) |
Ref | Expression |
---|---|
addcanprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcanprleml 7615 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) ⊆ (1st ‘𝐶)) | |
2 | 3ancomb 986 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P)) | |
3 | eqcom 2179 | . . . . . . 7 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) | |
4 | 2, 3 | anbi12i 460 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))) |
5 | addcanprleml 7615 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) | |
6 | 4, 5 | sylbi 121 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) |
7 | 1, 6 | eqssd 3174 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) = (1st ‘𝐶)) |
8 | addcanprlemu 7616 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐶)) | |
9 | addcanprlemu 7616 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) | |
10 | 4, 9 | sylbi 121 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) |
11 | 8, 10 | eqssd 3174 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) = (2nd ‘𝐶)) |
12 | 7, 11 | jca 306 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶))) |
13 | preqlu 7473 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) | |
14 | 13 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
15 | 14 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
16 | 12, 15 | mpbird 167 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶) |
17 | 16 | ex 115 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ‘cfv 5218 (class class class)co 5877 1st c1st 6141 2nd c2nd 6142 Pcnp 7292 +P cpp 7294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-iplp 7469 |
This theorem is referenced by: lteupri 7618 ltaprg 7620 enrer 7736 mulcmpblnr 7742 mulgt0sr 7779 srpospr 7784 |
Copyright terms: Public domain | W3C validator |