Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcanprg | GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.) |
Ref | Expression |
---|---|
addcanprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcanprleml 7588 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) ⊆ (1st ‘𝐶)) | |
2 | 3ancomb 986 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P)) | |
3 | eqcom 2177 | . . . . . . 7 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) | |
4 | 2, 3 | anbi12i 460 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))) |
5 | addcanprleml 7588 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) | |
6 | 4, 5 | sylbi 121 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) |
7 | 1, 6 | eqssd 3170 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) = (1st ‘𝐶)) |
8 | addcanprlemu 7589 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐶)) | |
9 | addcanprlemu 7589 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) | |
10 | 4, 9 | sylbi 121 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) |
11 | 8, 10 | eqssd 3170 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) = (2nd ‘𝐶)) |
12 | 7, 11 | jca 306 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶))) |
13 | preqlu 7446 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) | |
14 | 13 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
15 | 14 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
16 | 12, 15 | mpbird 167 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶) |
17 | 16 | ex 115 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 ‘cfv 5208 (class class class)co 5865 1st c1st 6129 2nd c2nd 6130 Pcnp 7265 +P cpp 7267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-2o 6408 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 df-enq0 7398 df-nq0 7399 df-0nq0 7400 df-plq0 7401 df-mq0 7402 df-inp 7440 df-iplp 7442 |
This theorem is referenced by: lteupri 7591 ltaprg 7593 enrer 7709 mulcmpblnr 7715 mulgt0sr 7752 srpospr 7757 |
Copyright terms: Public domain | W3C validator |