ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprg GIF version

Theorem addcanprg 7617
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
Assertion
Ref Expression
addcanprg ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanprg
StepHypRef Expression
1 addcanprleml 7615 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
2 3ancomb 986 . . . . . . 7 ((𝐴P𝐵P𝐶P) ↔ (𝐴P𝐶P𝐵P))
3 eqcom 2179 . . . . . . 7 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))
42, 3anbi12i 460 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)))
5 addcanprleml 7615 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st𝐶) ⊆ (1st𝐵))
64, 5sylbi 121 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐶) ⊆ (1st𝐵))
71, 6eqssd 3174 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) = (1st𝐶))
8 addcanprlemu 7616 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
9 addcanprlemu 7616 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd𝐶) ⊆ (2nd𝐵))
104, 9sylbi 121 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐶) ⊆ (2nd𝐵))
118, 10eqssd 3174 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) = (2nd𝐶))
127, 11jca 306 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶)))
13 preqlu 7473 . . . . 5 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
14133adant1 1015 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1514adantr 276 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1612, 15mpbird 167 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶)
1716ex 115 1 ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wss 3131  cfv 5218  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  Pcnp 7292   +P cpp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469
This theorem is referenced by:  lteupri  7618  ltaprg  7620  enrer  7736  mulcmpblnr  7742  mulgt0sr  7779  srpospr  7784
  Copyright terms: Public domain W3C validator