| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recexprlemex | GIF version | ||
| Description: 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | 
| Ref | Expression | 
|---|---|
| recexprlemex | ⊢ (𝐴 ∈ P → (𝐴 ·P 𝐵) = 1P) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recexpr.1 | . . . 4 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
| 2 | 1 | recexprlemss1l 7702 | . . 3 ⊢ (𝐴 ∈ P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P)) | 
| 3 | 1 | recexprlem1ssl 7700 | . . 3 ⊢ (𝐴 ∈ P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵))) | 
| 4 | 2, 3 | eqssd 3200 | . 2 ⊢ (𝐴 ∈ P → (1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P)) | 
| 5 | 1 | recexprlemss1u 7703 | . . 3 ⊢ (𝐴 ∈ P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P)) | 
| 6 | 1 | recexprlem1ssu 7701 | . . 3 ⊢ (𝐴 ∈ P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵))) | 
| 7 | 5, 6 | eqssd 3200 | . 2 ⊢ (𝐴 ∈ P → (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P)) | 
| 8 | 1 | recexprlempr 7699 | . . . 4 ⊢ (𝐴 ∈ P → 𝐵 ∈ P) | 
| 9 | mulclpr 7639 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) | |
| 10 | 8, 9 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ P → (𝐴 ·P 𝐵) ∈ P) | 
| 11 | 1pr 7621 | . . 3 ⊢ 1P ∈ P | |
| 12 | preqlu 7539 | . . 3 ⊢ (((𝐴 ·P 𝐵) ∈ P ∧ 1P ∈ P) → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P)))) | |
| 13 | 10, 11, 12 | sylancl 413 | . 2 ⊢ (𝐴 ∈ P → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P)))) | 
| 14 | 4, 7, 13 | mpbir2and 946 | 1 ⊢ (𝐴 ∈ P → (𝐴 ·P 𝐵) = 1P) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 〈cop 3625 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1st c1st 6196 2nd c2nd 6197 *Qcrq 7351 <Q cltq 7352 Pcnp 7358 1Pc1p 7359 ·P cmp 7361 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-imp 7536 | 
| This theorem is referenced by: recexpr 7705 | 
| Copyright terms: Public domain | W3C validator |