ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex GIF version

Theorem recexprlemex 7721
Description: 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7722. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemex (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemss1l 7719 . . 3 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
31recexprlem1ssl 7717 . . 3 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
42, 3eqssd 3201 . 2 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P))
51recexprlemss1u 7720 . . 3 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
61recexprlem1ssu 7718 . . 3 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
75, 6eqssd 3201 . 2 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))
81recexprlempr 7716 . . . 4 (𝐴P𝐵P)
9 mulclpr 7656 . . . 4 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
108, 9mpdan 421 . . 3 (𝐴P → (𝐴 ·P 𝐵) ∈ P)
11 1pr 7638 . . 3 1PP
12 preqlu 7556 . . 3 (((𝐴 ·P 𝐵) ∈ P ∧ 1PP) → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))))
1310, 11, 12sylancl 413 . 2 (𝐴P → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))))
144, 7, 13mpbir2and 946 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  cop 3626   class class class wbr 4034  cfv 5259  (class class class)co 5925  1st c1st 6205  2nd c2nd 6206  *Qcrq 7368   <Q cltq 7369  Pcnp 7375  1Pc1p 7376   ·P cmp 7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-imp 7553
This theorem is referenced by:  recexpr  7722
  Copyright terms: Public domain W3C validator