ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex GIF version

Theorem recexprlemex 7469
Description: 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7470. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemex (𝐴P → (𝐴 ·P 𝐵) = 1P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemss1l 7467 . . 3 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
31recexprlem1ssl 7465 . . 3 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
42, 3eqssd 3119 . 2 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P))
51recexprlemss1u 7468 . . 3 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
61recexprlem1ssu 7466 . . 3 (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
75, 6eqssd 3119 . 2 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))
81recexprlempr 7464 . . . 4 (𝐴P𝐵P)
9 mulclpr 7404 . . . 4 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
108, 9mpdan 418 . . 3 (𝐴P → (𝐴 ·P 𝐵) ∈ P)
11 1pr 7386 . . 3 1PP
12 preqlu 7304 . . 3 (((𝐴 ·P 𝐵) ∈ P ∧ 1PP) → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))))
1310, 11, 12sylancl 410 . 2 (𝐴P → ((𝐴 ·P 𝐵) = 1P ↔ ((1st ‘(𝐴 ·P 𝐵)) = (1st ‘1P) ∧ (2nd ‘(𝐴 ·P 𝐵)) = (2nd ‘1P))))
144, 7, 13mpbir2and 929 1 (𝐴P → (𝐴 ·P 𝐵) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  {cab 2126  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  *Qcrq 7116   <Q cltq 7117  Pcnp 7123  1Pc1p 7124   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-imp 7301
This theorem is referenced by:  recexpr  7470
  Copyright terms: Public domain W3C validator