ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpr GIF version

Theorem addnqpr 7578
Description: Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqpr ((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem addnqpr
StepHypRef Expression
1 addnqprlemfl 7576 . . 3 ((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
2 addnqprlemrl 7574 . . 3 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
31, 2eqssd 3187 . 2 ((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
4 addnqprlemfu 7577 . . 3 ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
5 addnqprlemru 7575 . . 3 ((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
64, 5eqssd 3187 . 2 ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
7 addclnq 7392 . . . 4 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
8 nqprlu 7564 . . . 4 ((𝐴 +Q 𝐵) ∈ Q → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ ∈ P)
97, 8syl 14 . . 3 ((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ ∈ P)
10 nqprlu 7564 . . . 4 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
11 nqprlu 7564 . . . 4 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
12 addclpr 7554 . . . 4 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
1310, 11, 12syl2an 289 . . 3 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
14 preqlu 7489 . . 3 ((⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ ∈ P ∧ (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P) → (⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ ((1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∧ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))))
159, 13, 14syl2anc 411 . 2 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ ((1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∧ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))))
163, 6, 15mpbir2and 946 1 ((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  {cab 2175  cop 3610   class class class wbr 4018  cfv 5231  (class class class)co 5891  1st c1st 6157  2nd c2nd 6158  Qcnq 7297   +Q cplq 7299   <Q cltq 7302  Pcnp 7308   +P cpp 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-2o 6436  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7321  df-pli 7322  df-mi 7323  df-lti 7324  df-plpq 7361  df-mpq 7362  df-enq 7364  df-nqqs 7365  df-plqqs 7366  df-mqqs 7367  df-1nqqs 7368  df-rq 7369  df-ltnqqs 7370  df-enq0 7441  df-nq0 7442  df-0nq0 7443  df-plq0 7444  df-mq0 7445  df-inp 7483  df-iplp 7485
This theorem is referenced by:  addnqpr1  7579  prplnqu  7637  caucvgprlemcanl  7661  caucvgprprlemloccalc  7701  caucvgprprlemnkltj  7706  caucvgprprlemnkeqj  7707  caucvgprprlemmu  7712  caucvgprprlemexbt  7723
  Copyright terms: Public domain W3C validator