Proof of Theorem addnqpr
Step | Hyp | Ref
| Expression |
1 | | addnqprlemfl 7500 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) ⊆
(1st ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
2 | | addnqprlemrl 7498 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (1st ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉)) |
3 | 1, 2 | eqssd 3159 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (1st
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
4 | | addnqprlemfu 7501 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) ⊆
(2nd ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
5 | | addnqprlemru 7499 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (2nd ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉)) |
6 | 4, 5 | eqssd 3159 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (2nd
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
7 | | addclnq 7316 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
+Q 𝐵) ∈ Q) |
8 | | nqprlu 7488 |
. . . 4
⊢ ((𝐴 +Q
𝐵) ∈ Q
→ 〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 ∈
P) |
9 | 7, 8 | syl 14 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 ∈
P) |
10 | | nqprlu 7488 |
. . . 4
⊢ (𝐴 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈
P) |
11 | | nqprlu 7488 |
. . . 4
⊢ (𝐵 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈
P) |
12 | | addclpr 7478 |
. . . 4
⊢
((〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P
∧ 〈{𝑙 ∣
𝑙
<Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P)
→ (〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ∈
P) |
13 | 10, 11, 12 | syl2an 287 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ∈
P) |
14 | | preqlu 7413 |
. . 3
⊢
((〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 ∈
P ∧ (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ∈ P)
→ (〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ ((1st
‘〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (1st
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ∧ (2nd
‘〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (2nd
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))))) |
15 | 9, 13, 14 | syl2anc 409 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ ((1st
‘〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (1st
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ∧ (2nd
‘〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉) = (2nd
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))))) |
16 | 3, 6, 15 | mpbir2and 934 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 〈{𝑙 ∣
𝑙
<Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) |