| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrprg | GIF version | ||
| Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1prl 7708 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
| 2 | distrlem5prl 7712 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
| 3 | 1, 2 | eqssd 3212 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
| 4 | distrlem1pru 7709 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
| 5 | distrlem5pru 7713 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
| 6 | 4, 5 | eqssd 3212 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
| 7 | simp1 1000 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐴 ∈ P) | |
| 8 | simp2 1001 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐵 ∈ P) | |
| 9 | simp3 1002 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐶 ∈ P) | |
| 10 | addclpr 7663 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) |
| 12 | mulclpr 7698 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) | |
| 13 | 7, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) |
| 14 | mulclpr 7698 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) | |
| 15 | 7, 8, 14 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| 16 | mulclpr 7698 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) | |
| 17 | 7, 9, 16 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) |
| 18 | addclpr 7663 | . . . 4 ⊢ (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) | |
| 19 | 15, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) |
| 20 | preqlu 7598 | . . 3 ⊢ (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) | |
| 21 | 13, 19, 20 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) |
| 22 | 3, 6, 21 | mpbir2and 947 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 1st c1st 6234 2nd c2nd 6235 Pcnp 7417 +P cpp 7419 ·P cmp 7420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-iplp 7594 df-imp 7595 |
| This theorem is referenced by: ltmprr 7768 mulcmpblnrlemg 7866 mulasssrg 7884 distrsrg 7885 m1m1sr 7887 1idsr 7894 recexgt0sr 7899 mulgt0sr 7904 mulextsr1lem 7906 recidpirqlemcalc 7983 |
| Copyright terms: Public domain | W3C validator |