ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrprg GIF version

Theorem distrprg 7648
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrprg ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Proof of Theorem distrprg
StepHypRef Expression
1 distrlem1prl 7642 . . 3 ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
2 distrlem5prl 7646 . . 3 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
31, 2eqssd 3196 . 2 ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4 distrlem1pru 7643 . . 3 ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
5 distrlem5pru 7647 . . 3 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
64, 5eqssd 3196 . 2 ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
7 simp1 999 . . . 4 ((𝐴P𝐵P𝐶P) → 𝐴P)
8 simp2 1000 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐵P)
9 simp3 1001 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐶P)
10 addclpr 7597 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
118, 9, 10syl2anc 411 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
12 mulclpr 7632 . . . 4 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
137, 11, 12syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
14 mulclpr 7632 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
157, 8, 14syl2anc 411 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
16 mulclpr 7632 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
177, 9, 16syl2anc 411 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
18 addclpr 7597 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P)
1915, 17, 18syl2anc 411 . . 3 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P)
20 preqlu 7532 . . 3 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
2113, 19, 20syl2anc 411 . 2 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
223, 6, 21mpbir2and 946 1 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Pcnp 7351   +P cpp 7353   ·P cmp 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-imp 7529
This theorem is referenced by:  ltmprr  7702  mulcmpblnrlemg  7800  mulasssrg  7818  distrsrg  7819  m1m1sr  7821  1idsr  7828  recexgt0sr  7833  mulgt0sr  7838  mulextsr1lem  7840  recidpirqlemcalc  7917
  Copyright terms: Public domain W3C validator