![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > distrprg | GIF version |
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
distrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distrlem1prl 7338 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
2 | distrlem5prl 7342 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
3 | 1, 2 | eqssd 3080 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
4 | distrlem1pru 7339 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
5 | distrlem5pru 7343 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
6 | 4, 5 | eqssd 3080 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
7 | simp1 964 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐴 ∈ P) | |
8 | simp2 965 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐵 ∈ P) | |
9 | simp3 966 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐶 ∈ P) | |
10 | addclpr 7293 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) | |
11 | 8, 9, 10 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) |
12 | mulclpr 7328 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) | |
13 | 7, 11, 12 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) |
14 | mulclpr 7328 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) | |
15 | 7, 8, 14 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
16 | mulclpr 7328 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) | |
17 | 7, 9, 16 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) |
18 | addclpr 7293 | . . . 4 ⊢ (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) | |
19 | 15, 17, 18 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) |
20 | preqlu 7228 | . . 3 ⊢ (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) | |
21 | 13, 19, 20 | syl2anc 406 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) |
22 | 3, 6, 21 | mpbir2and 911 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 ‘cfv 5081 (class class class)co 5728 1st c1st 5990 2nd c2nd 5991 Pcnp 7047 +P cpp 7049 ·P cmp 7050 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-eprel 4171 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-1o 6267 df-2o 6268 df-oadd 6271 df-omul 6272 df-er 6383 df-ec 6385 df-qs 6389 df-ni 7060 df-pli 7061 df-mi 7062 df-lti 7063 df-plpq 7100 df-mpq 7101 df-enq 7103 df-nqqs 7104 df-plqqs 7105 df-mqqs 7106 df-1nqqs 7107 df-rq 7108 df-ltnqqs 7109 df-enq0 7180 df-nq0 7181 df-0nq0 7182 df-plq0 7183 df-mq0 7184 df-inp 7222 df-iplp 7224 df-imp 7225 |
This theorem is referenced by: ltmprr 7398 mulcmpblnrlemg 7483 mulasssrg 7501 distrsrg 7502 m1m1sr 7504 1idsr 7511 recexgt0sr 7516 mulgt0sr 7520 mulextsr1lem 7522 recidpirqlemcalc 7592 |
Copyright terms: Public domain | W3C validator |