| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrprg | GIF version | ||
| Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1prl 7757 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
| 2 | distrlem5prl 7761 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
| 3 | 1, 2 | eqssd 3241 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
| 4 | distrlem1pru 7758 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) | |
| 5 | distrlem5pru 7762 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) | |
| 6 | 4, 5 | eqssd 3241 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))) |
| 7 | simp1 1021 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐴 ∈ P) | |
| 8 | simp2 1022 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐵 ∈ P) | |
| 9 | simp3 1023 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → 𝐶 ∈ P) | |
| 10 | addclpr 7712 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 +P 𝐶) ∈ P) |
| 12 | mulclpr 7747 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) | |
| 13 | 7, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P) |
| 14 | mulclpr 7747 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) | |
| 15 | 7, 8, 14 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| 16 | mulclpr 7747 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) | |
| 17 | 7, 9, 16 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P 𝐶) ∈ P) |
| 18 | addclpr 7712 | . . . 4 ⊢ (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) | |
| 19 | 15, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) |
| 20 | preqlu 7647 | . . 3 ⊢ (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) | |
| 21 | 13, 19, 20 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ((1st ‘(𝐴 ·P (𝐵 +P 𝐶))) = (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ∧ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) = (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))) |
| 22 | 3, 6, 21 | mpbir2and 950 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 1st c1st 6274 2nd c2nd 6275 Pcnp 7466 +P cpp 7468 ·P cmp 7469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-iplp 7643 df-imp 7644 |
| This theorem is referenced by: ltmprr 7817 mulcmpblnrlemg 7915 mulasssrg 7933 distrsrg 7934 m1m1sr 7936 1idsr 7943 recexgt0sr 7948 mulgt0sr 7953 mulextsr1lem 7955 recidpirqlemcalc 8032 |
| Copyright terms: Public domain | W3C validator |