Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprnqu | GIF version |
Description: An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnqu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnqu 7454 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) | |
2 | 1 | sselda 3153 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 〈cop 3592 Qcnq 7254 Pcnp 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-qs 6531 df-ni 7278 df-nqqs 7322 df-inp 7440 |
This theorem is referenced by: prltlu 7461 prnminu 7463 genpdf 7482 genipv 7483 genpelvu 7487 genpmu 7492 genprndu 7496 genpassu 7499 addnqprulem 7502 addnqpru 7504 addlocprlemeqgt 7506 nqpru 7526 prmuloc 7540 mulnqpru 7543 addcomprg 7552 mulcomprg 7554 distrlem1pru 7557 distrlem4pru 7559 1idpru 7565 ltsopr 7570 ltaddpr 7571 ltexprlemm 7574 ltexprlemopl 7575 ltexprlemlol 7576 ltexprlemopu 7577 ltexprlemdisj 7580 ltexprlemloc 7581 ltexprlemfu 7585 ltexprlemru 7586 addcanprlemu 7589 prplnqu 7594 recexprlemloc 7605 recexprlemss1u 7610 aptiprlemu 7614 |
Copyright terms: Public domain | W3C validator |