| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnqu | GIF version | ||
| Description: An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnqu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnqu 7593 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) | |
| 2 | 1 | sselda 3193 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 〈cop 3636 Qcnq 7393 Pcnp 7404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-qs 6626 df-ni 7417 df-nqqs 7461 df-inp 7579 |
| This theorem is referenced by: prltlu 7600 prnminu 7602 genpdf 7621 genipv 7622 genpelvu 7626 genpmu 7631 genprndu 7635 genpassu 7638 addnqprulem 7641 addnqpru 7643 addlocprlemeqgt 7645 nqpru 7665 prmuloc 7679 mulnqpru 7682 addcomprg 7691 mulcomprg 7693 distrlem1pru 7696 distrlem4pru 7698 1idpru 7704 ltsopr 7709 ltaddpr 7710 ltexprlemm 7713 ltexprlemopl 7714 ltexprlemlol 7715 ltexprlemopu 7716 ltexprlemdisj 7719 ltexprlemloc 7720 ltexprlemfu 7724 ltexprlemru 7725 addcanprlemu 7728 prplnqu 7733 recexprlemloc 7744 recexprlemss1u 7749 aptiprlemu 7753 |
| Copyright terms: Public domain | W3C validator |