![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressbasssd | GIF version |
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
ressbasssd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ressbasssd | ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
2 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
3 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | ressbasssd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | ressbasd 12526 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
6 | inss2 3356 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
7 | 5, 6 | eqsstrrdi 3208 | 1 ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∩ cin 3128 ⊆ wss 3129 ‘cfv 5216 (class class class)co 5874 Basecbs 12461 ↾s cress 12462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-inn 8919 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-iress 12469 |
This theorem is referenced by: subcmnd 13127 |
Copyright terms: Public domain | W3C validator |