| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbasssd | GIF version | ||
| Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbasssd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ressbasssd | ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 2 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 3 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | ressbasssd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | ressbasd 12932 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 6 | inss2 3394 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 7 | 5, 6 | eqsstrrdi 3246 | 1 ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∩ cin 3165 ⊆ wss 3166 ‘cfv 5272 (class class class)co 5946 Basecbs 12865 ↾s cress 12866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-inn 9039 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-iress 12873 |
| This theorem is referenced by: subcmnd 13702 lidlssbas 14272 |
| Copyright terms: Public domain | W3C validator |