![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressid | GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3083 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | id 19 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ 𝑋) | |
3 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
4 | baseid 11855 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
5 | basendxnn 11857 | . . . . . 6 ⊢ (Base‘ndx) ∈ ℕ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → (Base‘ndx) ∈ ℕ) |
7 | 4, 2, 6 | strnfvnd 11822 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) = (𝑊‘(Base‘ndx))) |
8 | fvexg 5394 | . . . . 5 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ) → (𝑊‘(Base‘ndx)) ∈ V) | |
9 | 5, 8 | mpan2 419 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊‘(Base‘ndx)) ∈ V) |
10 | 7, 9 | eqeltrd 2191 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
11 | 3, 10 | syl5eqel 2201 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝐵 ∈ V) |
12 | eqid 2115 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
13 | 12, 3 | ressid2 11861 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
14 | 1, 2, 11, 13 | mp3an2i 1303 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 ‘cfv 5081 (class class class)co 5728 ℕcn 8630 ndxcnx 11799 Basecbs 11802 ↾s cress 11803 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1re 7639 ax-addrcl 7642 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-iota 5046 df-fun 5083 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-inn 8631 df-ndx 11805 df-slot 11806 df-base 11808 df-ress 11810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |