Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ressid | GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | id 19 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ 𝑋) | |
3 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
4 | baseid 12447 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
5 | basendxnn 12449 | . . . . . 6 ⊢ (Base‘ndx) ∈ ℕ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → (Base‘ndx) ∈ ℕ) |
7 | 4, 2, 6 | strnfvnd 12414 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) = (𝑊‘(Base‘ndx))) |
8 | fvexg 5505 | . . . . 5 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ) → (𝑊‘(Base‘ndx)) ∈ V) | |
9 | 5, 8 | mpan2 422 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊‘(Base‘ndx)) ∈ V) |
10 | 7, 9 | eqeltrd 2243 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
11 | 3, 10 | eqeltrid 2253 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝐵 ∈ V) |
12 | eqid 2165 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
13 | 12, 3 | ressid2 12454 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
14 | 1, 2, 11, 13 | mp3an2i 1332 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ‘cfv 5188 (class class class)co 5842 ℕcn 8857 ndxcnx 12391 Basecbs 12394 ↾s cress 12395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-ress 12402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |