ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf GIF version

Theorem eucalgf 10912
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgf 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 8385 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
21adantl 271 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ≠ 0)
32neneqd 2272 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ¬ 𝑦 = 0)
43iffalsed 3389 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑦, (𝑥 mod 𝑦)⟩)
5 nnnn0 8613 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
65adantl 271 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
7 nn0z 8703 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 zmodcl 9679 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
97, 8sylan 277 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
10 opelxpi 4442 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
116, 9, 10syl2anc 403 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
124, 11eqeltrd 2161 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
1312adantlr 461 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
14 iftrue 3384 . . . . . 6 (𝑦 = 0 → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
1514adantl 271 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
16 opelxpi 4442 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1716adantr 270 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1815, 17eqeltrd 2161 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
19 simpr 108 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
20 elnn0 8608 . . . . 5 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2119, 20sylib 120 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2213, 18, 21mpjaodan 745 . . 3 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
2322rgen2a 2425 . 2 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0)
24 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2524fmpt2 5928 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
2623, 25mpbi 143 1 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Colors of variables: wff set class
Syntax hints:  wa 102  wo 662   = wceq 1287  wcel 1436  wne 2251  wral 2355  ifcif 3379  cop 3434   × cxp 4409  wf 4977  (class class class)co 5613  cmpt2 5615  0cc0 7294  cn 8357  0cn0 8606  cz 8683   mod cmo 9657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-po 4097  df-iso 4098  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-n0 8607  df-z 8684  df-q 9037  df-rp 9067  df-fl 9605  df-mod 9658
This theorem is referenced by:  eucialgcvga  10915  eucialg  10916
  Copyright terms: Public domain W3C validator