![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eucalgf | GIF version |
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgf | ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 9010 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
2 | 1 | adantl 277 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
3 | 2 | neneqd 2385 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 = 0) |
4 | 3 | iffalsed 3567 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑦, (𝑥 mod 𝑦)〉) |
5 | nnnn0 9247 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
6 | 5 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0) |
7 | nn0z 9337 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
8 | zmodcl 10415 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) | |
9 | 7, 8 | sylan 283 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) |
10 | opelxpi 4691 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) | |
11 | 6, 9, 10 | syl2anc 411 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) |
12 | 4, 11 | eqeltrd 2270 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
13 | 12 | adantlr 477 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
14 | iftrue 3562 | . . . . . 6 ⊢ (𝑦 = 0 → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) | |
15 | 14 | adantl 277 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) |
16 | opelxpi 4691 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) | |
17 | 16 | adantr 276 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) |
18 | 15, 17 | eqeltrd 2270 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
19 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
20 | elnn0 9242 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0)) | |
21 | 19, 20 | sylib 122 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0)) |
22 | 13, 18, 21 | mpjaodan 799 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
23 | 22 | rgen2a 2548 | . 2 ⊢ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) |
24 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
25 | 24 | fmpo 6254 | . 2 ⊢ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
26 | 23, 25 | mpbi 145 | 1 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ifcif 3557 〈cop 3621 × cxp 4657 ⟶wf 5250 (class class class)co 5918 ∈ cmpo 5920 0cc0 7872 ℕcn 8982 ℕ0cn0 9240 ℤcz 9317 mod cmo 10393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 |
This theorem is referenced by: eucalgcvga 12196 eucalg 12197 |
Copyright terms: Public domain | W3C validator |