Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eucalgf | GIF version |
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgf | ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 8844 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
2 | 1 | adantl 275 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
3 | 2 | neneqd 2348 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 = 0) |
4 | 3 | iffalsed 3515 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑦, (𝑥 mod 𝑦)〉) |
5 | nnnn0 9080 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
6 | 5 | adantl 275 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0) |
7 | nn0z 9170 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
8 | zmodcl 10225 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) | |
9 | 7, 8 | sylan 281 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) |
10 | opelxpi 4615 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) | |
11 | 6, 9, 10 | syl2anc 409 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) |
12 | 4, 11 | eqeltrd 2234 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
13 | 12 | adantlr 469 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
14 | iftrue 3510 | . . . . . 6 ⊢ (𝑦 = 0 → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) | |
15 | 14 | adantl 275 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) |
16 | opelxpi 4615 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) | |
17 | 16 | adantr 274 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) |
18 | 15, 17 | eqeltrd 2234 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
19 | simpr 109 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
20 | elnn0 9075 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0)) | |
21 | 19, 20 | sylib 121 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0)) |
22 | 13, 18, 21 | mpjaodan 788 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
23 | 22 | rgen2a 2511 | . 2 ⊢ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) |
24 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
25 | 24 | fmpo 6143 | . 2 ⊢ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
26 | 23, 25 | mpbi 144 | 1 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∨ wo 698 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∀wral 2435 ifcif 3505 〈cop 3563 × cxp 4581 ⟶wf 5163 (class class class)co 5818 ∈ cmpo 5820 0cc0 7715 ℕcn 8816 ℕ0cn0 9073 ℤcz 9150 mod cmo 10203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-n0 9074 df-z 9151 df-q 9511 df-rp 9543 df-fl 10151 df-mod 10204 |
This theorem is referenced by: eucalgcvga 11915 eucalg 11916 |
Copyright terms: Public domain | W3C validator |