ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf GIF version

Theorem eucalgf 12421
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgf 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 9071 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
21adantl 277 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ≠ 0)
32neneqd 2398 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ¬ 𝑦 = 0)
43iffalsed 3582 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑦, (𝑥 mod 𝑦)⟩)
5 nnnn0 9309 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
65adantl 277 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
7 nn0z 9399 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 zmodcl 10496 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
97, 8sylan 283 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
10 opelxpi 4711 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
116, 9, 10syl2anc 411 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
124, 11eqeltrd 2283 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
1312adantlr 477 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
14 iftrue 3577 . . . . . 6 (𝑦 = 0 → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
1514adantl 277 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
16 opelxpi 4711 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1716adantr 276 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1815, 17eqeltrd 2283 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
19 simpr 110 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
20 elnn0 9304 . . . . 5 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2119, 20sylib 122 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2213, 18, 21mpjaodan 800 . . 3 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
2322rgen2a 2561 . 2 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0)
24 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2524fmpo 6294 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
2623, 25mpbi 145 1 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wcel 2177  wne 2377  wral 2485  ifcif 3572  cop 3637   × cxp 4677  wf 5272  (class class class)co 5951  cmpo 5953  0cc0 7932  cn 9043  0cn0 9302  cz 9379   mod cmo 10474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475
This theorem is referenced by:  eucalgcvga  12424  eucalg  12425
  Copyright terms: Public domain W3C validator