ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf GIF version

Theorem eucalgf 12543
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgf 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 9106 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
21adantl 277 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ≠ 0)
32neneqd 2401 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ¬ 𝑦 = 0)
43iffalsed 3592 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑦, (𝑥 mod 𝑦)⟩)
5 nnnn0 9344 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
65adantl 277 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
7 nn0z 9434 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 zmodcl 10533 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
97, 8sylan 283 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
10 opelxpi 4728 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
116, 9, 10syl2anc 411 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
124, 11eqeltrd 2286 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
1312adantlr 477 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
14 iftrue 3587 . . . . . 6 (𝑦 = 0 → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
1514adantl 277 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
16 opelxpi 4728 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1716adantr 276 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1815, 17eqeltrd 2286 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
19 simpr 110 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
20 elnn0 9339 . . . . 5 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2119, 20sylib 122 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2213, 18, 21mpjaodan 802 . . 3 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
2322rgen2a 2564 . 2 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0)
24 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2524fmpo 6317 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
2623, 25mpbi 145 1 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 712   = wceq 1375  wcel 2180  wne 2380  wral 2488  ifcif 3582  cop 3649   × cxp 4694  wf 5290  (class class class)co 5974  cmpo 5976  0cc0 7967  cn 9078  0cn0 9337  cz 9414   mod cmo 10511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512
This theorem is referenced by:  eucalgcvga  12546  eucalg  12547
  Copyright terms: Public domain W3C validator