ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm GIF version

Theorem subrngintm 14018
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗

Proof of Theorem subrngintm
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 14010 . . . . 5 (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3198 . . . 4 (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3202 . . . 4 ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13578 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3189 . . . . . . 7 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
87ad4ant14 514 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
9 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
10 elinti 3896 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1110imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
129, 11sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
13 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
14 elinti 3896 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
1514imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
1613, 15sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
17 eqid 2206 . . . . . . 7 (.r𝑅) = (.r𝑅)
1817subrngmcl 14015 . . . . . 6 ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
198, 12, 16, 18syl3anc 1250 . . . . 5 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2019ralrimiva 2580 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
21 ssel 3188 . . . . . . . . 9 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑗 ∈ (SubRng‘𝑅)))
22 subrngrcl 14009 . . . . . . . . 9 (𝑗 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2321, 22syl6 33 . . . . . . . 8 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑅 ∈ Rng))
2423exlimdv 1843 . . . . . . 7 (𝑆 ⊆ (SubRng‘𝑅) → (∃𝑗 𝑗𝑆𝑅 ∈ Rng))
2524imp 124 . . . . . 6 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑅 ∈ Rng)
26 vex 2776 . . . . . . . 8 𝑥 ∈ V
2726a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑥 ∈ V)
28 mulrslid 13008 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2928slotex 12903 . . . . . . 7 (𝑅 ∈ Rng → (.r𝑅) ∈ V)
30 vex 2776 . . . . . . . 8 𝑦 ∈ V
3130a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑦 ∈ V)
32 ovexg 5985 . . . . . . 7 ((𝑥 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r𝑅)𝑦) ∈ V)
3327, 29, 31, 32syl3anc 1250 . . . . . 6 (𝑅 ∈ Rng → (𝑥(.r𝑅)𝑦) ∈ V)
34 elintg 3895 . . . . . 6 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3525, 33, 343syl 17 . . . . 5 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3635adantr 276 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3720, 36mpbird 167 . . 3 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3837ralrimivva 2589 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
39 eqid 2206 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4039, 17issubrng2 14016 . . 3 (𝑅 ∈ Rng → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4125, 40syl 14 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
426, 38, 41mpbir2and 947 1 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  wcel 2177  wral 2485  Vcvv 2773  wss 3167   cint 3887  cfv 5276  (class class class)co 5951  Basecbs 12876  .rcmulr 12954  SubGrpcsubg 13547  Rngcrng 13738  SubRngcsubrng 14003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-subg 13550  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-subrng 14004
This theorem is referenced by:  subrngin  14019
  Copyright terms: Public domain W3C validator