ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm GIF version

Theorem subrngintm 14141
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗

Proof of Theorem subrngintm
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 14133 . . . . 5 (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3208 . . . 4 (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3212 . . . 4 ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13701 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3199 . . . . . . 7 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
87ad4ant14 514 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
9 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
10 elinti 3911 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1110imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
129, 11sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
13 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
14 elinti 3911 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
1514imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
1613, 15sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
17 eqid 2209 . . . . . . 7 (.r𝑅) = (.r𝑅)
1817subrngmcl 14138 . . . . . 6 ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
198, 12, 16, 18syl3anc 1252 . . . . 5 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2019ralrimiva 2583 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
21 ssel 3198 . . . . . . . . 9 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑗 ∈ (SubRng‘𝑅)))
22 subrngrcl 14132 . . . . . . . . 9 (𝑗 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2321, 22syl6 33 . . . . . . . 8 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑅 ∈ Rng))
2423exlimdv 1845 . . . . . . 7 (𝑆 ⊆ (SubRng‘𝑅) → (∃𝑗 𝑗𝑆𝑅 ∈ Rng))
2524imp 124 . . . . . 6 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑅 ∈ Rng)
26 vex 2782 . . . . . . . 8 𝑥 ∈ V
2726a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑥 ∈ V)
28 mulrslid 13131 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2928slotex 13025 . . . . . . 7 (𝑅 ∈ Rng → (.r𝑅) ∈ V)
30 vex 2782 . . . . . . . 8 𝑦 ∈ V
3130a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑦 ∈ V)
32 ovexg 6008 . . . . . . 7 ((𝑥 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r𝑅)𝑦) ∈ V)
3327, 29, 31, 32syl3anc 1252 . . . . . 6 (𝑅 ∈ Rng → (𝑥(.r𝑅)𝑦) ∈ V)
34 elintg 3910 . . . . . 6 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3525, 33, 343syl 17 . . . . 5 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3635adantr 276 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3720, 36mpbird 167 . . 3 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3837ralrimivva 2592 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
39 eqid 2209 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4039, 17issubrng2 14139 . . 3 (𝑅 ∈ Rng → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4125, 40syl 14 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
426, 38, 41mpbir2and 949 1 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1518  wcel 2180  wral 2488  Vcvv 2779  wss 3177   cint 3902  cfv 5294  (class class class)co 5974  Basecbs 12998  .rcmulr 13077  SubGrpcsubg 13670  Rngcrng 13861  SubRngcsubrng 14126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-subg 13673  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-subrng 14127
This theorem is referenced by:  subrngin  14142
  Copyright terms: Public domain W3C validator