ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm GIF version

Theorem subrngintm 14184
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗

Proof of Theorem subrngintm
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 14176 . . . . 5 (𝑟 ∈ (SubRng‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3228 . . . 4 (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3232 . . . 4 ((𝑆 ⊆ (SubRng‘𝑅) ∧ (SubRng‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRng‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13743 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3219 . . . . . . 7 ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
87ad4ant14 514 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRng‘𝑅))
9 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
10 elinti 3932 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1110imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
129, 11sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
13 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
14 elinti 3932 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
1514imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
1613, 15sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
17 eqid 2229 . . . . . . 7 (.r𝑅) = (.r𝑅)
1817subrngmcl 14181 . . . . . 6 ((𝑟 ∈ (SubRng‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
198, 12, 16, 18syl3anc 1271 . . . . 5 ((((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2019ralrimiva 2603 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
21 ssel 3218 . . . . . . . . 9 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑗 ∈ (SubRng‘𝑅)))
22 subrngrcl 14175 . . . . . . . . 9 (𝑗 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2321, 22syl6 33 . . . . . . . 8 (𝑆 ⊆ (SubRng‘𝑅) → (𝑗𝑆𝑅 ∈ Rng))
2423exlimdv 1865 . . . . . . 7 (𝑆 ⊆ (SubRng‘𝑅) → (∃𝑗 𝑗𝑆𝑅 ∈ Rng))
2524imp 124 . . . . . 6 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑅 ∈ Rng)
26 vex 2802 . . . . . . . 8 𝑥 ∈ V
2726a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑥 ∈ V)
28 mulrslid 13173 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2928slotex 13067 . . . . . . 7 (𝑅 ∈ Rng → (.r𝑅) ∈ V)
30 vex 2802 . . . . . . . 8 𝑦 ∈ V
3130a1i 9 . . . . . . 7 (𝑅 ∈ Rng → 𝑦 ∈ V)
32 ovexg 6041 . . . . . . 7 ((𝑥 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r𝑅)𝑦) ∈ V)
3327, 29, 31, 32syl3anc 1271 . . . . . 6 (𝑅 ∈ Rng → (𝑥(.r𝑅)𝑦) ∈ V)
34 elintg 3931 . . . . . 6 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3525, 33, 343syl 17 . . . . 5 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3635adantr 276 . . . 4 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
3720, 36mpbird 167 . . 3 (((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3837ralrimivva 2612 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
39 eqid 2229 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4039, 17issubrng2 14182 . . 3 (𝑅 ∈ Rng → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4125, 40syl 14 . 2 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → ( 𝑆 ∈ (SubRng‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
426, 38, 41mpbir2and 950 1 ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1538  wcel 2200  wral 2508  Vcvv 2799  wss 3197   cint 3923  cfv 5318  (class class class)co 6007  Basecbs 13040  .rcmulr 13119  SubGrpcsubg 13712  Rngcrng 13903  SubRngcsubrng 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-subrng 14170
This theorem is referenced by:  subrngin  14185
  Copyright terms: Public domain W3C validator